Commutator Subgroup - Definition

Definition

This motivates the definition of the commutator subgroup (also called the derived subgroup, and denoted G′ or G(1)) of G: it is the subgroup generated by all the commutators.

It follows from the properties of commutators that any element of is of the form

for some natural number n. Moreover, since, the commutator subgroup is normal in G. For any homomorphism f: GH,

,

so that .

This shows that the commutator subgroup can be viewed as a functor on the category of groups, some implications of which are explored below. Moreover, taking G = H it shows that the commutator subgroup is stable under every endomorphism of G: that is, is a fully characteristic subgroup of G, a property which is considerably stronger than normality.

The commutator subgroup can also be defined as the set of elements g of the group which have an expression as a product g = g1 g2 ... gk that can be rearranged to give the identity.

Read more about this topic:  Commutator Subgroup

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)