Commutator Subgroup - Definition

Definition

This motivates the definition of the commutator subgroup (also called the derived subgroup, and denoted G′ or G(1)) of G: it is the subgroup generated by all the commutators.

It follows from the properties of commutators that any element of is of the form

for some natural number n. Moreover, since, the commutator subgroup is normal in G. For any homomorphism f: GH,

,

so that .

This shows that the commutator subgroup can be viewed as a functor on the category of groups, some implications of which are explored below. Moreover, taking G = H it shows that the commutator subgroup is stable under every endomorphism of G: that is, is a fully characteristic subgroup of G, a property which is considerably stronger than normality.

The commutator subgroup can also be defined as the set of elements g of the group which have an expression as a product g = g1 g2 ... gk that can be rearranged to give the identity.

Read more about this topic:  Commutator Subgroup

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)