Commutator Subgroup - Definition

Definition

This motivates the definition of the commutator subgroup (also called the derived subgroup, and denoted G′ or G(1)) of G: it is the subgroup generated by all the commutators.

It follows from the properties of commutators that any element of is of the form

for some natural number n. Moreover, since, the commutator subgroup is normal in G. For any homomorphism f: GH,

,

so that .

This shows that the commutator subgroup can be viewed as a functor on the category of groups, some implications of which are explored below. Moreover, taking G = H it shows that the commutator subgroup is stable under every endomorphism of G: that is, is a fully characteristic subgroup of G, a property which is considerably stronger than normality.

The commutator subgroup can also be defined as the set of elements g of the group which have an expression as a product g = g1 g2 ... gk that can be rearranged to give the identity.

Read more about this topic:  Commutator Subgroup

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)