Colorado Plateau - Geology

Geology

One of the most geologically intriguing features of the Colorado Plateau is its remarkable stability. Relatively little rock deformation such as faulting and folding has affected this high, thick crustal block within the last 600 million years or so. In contrast, provinces that have suffered severe deformation surround the plateau. Mountain building thrust up the Rocky Mountains to the north and east and tremendous, earth-stretching tension created the Basin and Range province to the west and south. Sub ranges of the Southern Rocky Mountains are scattered throughout the Colorado Plateau.

The Precambrian and Paleozoic history of the Colorado Plateau is best revealed near its southern end where the Grand Canyon has exposed rocks with ages that span almost 2 billion years. The oldest rocks at river level are igneous and metamorphic and have been lumped together as "Vishnu Basement Rocks"; the oldest ages recorded by these rocks fall in the range 1950 to 1680 million years. An erosion surface on the "Vishnu Basement Rocks" is covered by sedimentary rocks and basalt flows, and these rocks formed in the interval from about 1250 to 750 million years ago: in turn, they were uplifted and split into a range of fault-block mountains. Erosion greatly reduced this mountain range prior to the encroachment of a seaway along the passive western edge of the continent in the early Paleozoic. At the canyon rim is the Kaibab Formation, limestone deposited in the late Paleozoic (Permian) about 270 million years ago.

A 12,000 to 15,000 ft. (3700 to 4600 m) high extension of the Ancestral Rocky Mountains called the Uncompahgre Mountains were uplifted and the adjacent Paradox Basin subsided. Almost 4 mi. (6.4 km) of sediment from the mountains and evaporites from the sea were deposited (see geology of the Canyonlands area for detail). Most of the formations were deposited in warm shallow seas and near-shore environments (such as beaches and swamps) as the seashore repeatedly advanced and retreated over the edge of a proto-North America (for detail, see geology of the Grand Canyon area). The province was probably on a continental margin throughout the late Precambrian and most of the Paleozoic era. Igneous rocks injected millions of years later form a marbled network through parts of the Colorado Plateau's darker metamorphic basement. By 600 million years ago North America had been leveled off to a remarkably smooth surface.

Throughout the Paleozoic Era, tropical seas periodically inundated the Colorado Plateau region. Thick layers of limestone, sandstone, siltstone, and shale were laid down in the shallow marine waters. During times when the seas retreated, stream deposits and dune sands were deposited or older layers were removed by erosion. Over 300 million years passed as layer upon layer of sediment accumulated.

It was not until the upheavals that coincided with the formation of the supercontinent Pangea began about 250 million years ago that deposits of marine sediment waned and terrestrial deposits dominate. In late Paleozoic and much of the Mesozoic era the region was affected by a series of orogenies (mountain-building events) that deformed western North America and caused a great deal of uplift. Eruptions from volcanic mountain ranges to the west buried vast regions beneath ashy debris. Short-lived rivers, lakes, and inland seas left sedimentary records of their passage. Streams, ponds and lakes created formations such as the Chinle, Moenave, and Kayenta in the Mesozoic era. Later a vast desert formed the Navajo and Temple Cap formations and dry near-shore environment formed the Carmel (see geology of the Zion and Kolob canyons area for details).

The area was again covered by a warm shallow sea when the Cretaceous Seaway opened in late Mesozoic time. The Dakota Sandstone and the Tropic Shale were deposited in the warm shallow waters of this advancing and retreating seaway. Several other formations were also created but were mostly eroded following two major periods of uplift.

The Laramide orogeny closed the seaway and uplifted a large belt of crust from Montana to Mexico, with the Colorado Plateau region being the largest block. Thrust faults in Colorado are thought to have formed from a slight clockwise movement of the region, which acted as a rigid crustal block. The Colorado Plateau Province was uplifted largely as a single block, possibly due to its relative thickness. This relative thickness may be why compressional forces from the orogeny were mostly transmitted through the province instead of deforming it. Pre-existing weaknesses in Precambrian rocks were exploited and reactivated by the compression. It was along these ancient faults and other deeply-buried structures that much of the province's relatively small and gently-inclined flexures (such as anticlines, synclines, and monoclines) formed. Some of the prominent isolated mountain ranges of the Plateau, such as Ute Mountain and the Carrizo Mountains, both near the Four Corners, are cored by igneous rocks that were emplaced about 70 million years ago.

Minor uplift events continued through the start of the Cenozoic era and were accompanied by some basaltic lava eruptions and mild deformation. The colorful Claron Formation that forms the delicate hoodoos of Bryce Amphitheater and Cedar Breaks was then laid down as sediments in cool streams and lakes (see geology of the Bryce Canyon area for details). The flat-lying Chuska Sandstone was deposited about 34 million years ago; the sandstone is predominantly of eolian origin and locally more than 500 meters thick. The Chuska Sandstone caps the Chuska mountains, and it lies unconformably on Mesozoic rocks deformed during the Laramide orogeny.

Younger igneous rocks form spectacular topographic features. The Henry Mountains, La Sal Range, and Abajo Mountains, ranges that dominate many views in southeastern Utah, are formed about igneous rocks that were intruded in the interval from 20 to 31 million years: some igneous intrusions in these mountains form laccoliths, a form of intrusion recognized by Grove Karl Gilbert during his studies of the Henry Mountains. Ship Rock (also called Shiprock), in northwestern New Mexico, and Church Rock and Agathla, near Monument Valley, are erosional remnants of potassium-rich igneous rocks and associated breccias of the Navajo Volcanic Field, produced about 25 million years ago. The Hopi Buttes in northeastern Arizona are held up by resistant sheets of sodic volcanic rocks, extruded about 7 million years ago. More recent igneous rocks are concentrated nearer the margins of the Colorado Plateau. The San Francisco Peaks near Flagstaff, south of the Grand Canyon, are volcanic landforms produced by igneous activity that began in that area about 6 million years ago and continued until 1064 C.E., when basalt erupted in Sunset Crater National Monument. Mount Taylor, near Grants, New Mexico, is a volcanic structure with a history similar to that of the San Francisco Peaks: a basalt flow closer to Grants was extruded only about 3000 years ago (see El Malpais National Monument). These young igneous rocks may record processes in the Earth's mantle that are eating away at deep margins of the relatively stable block of the Plateau.

Tectonic activity resumed in Mid Cenozoic time and started to unevenly uplift and slightly tilt the Colorado Plateau region and the region to the west some 20 million years ago (as much as 3 kilometers of uplift occurred). Streams had their gradient increased and they responded by downcutting faster. Headward erosion and mass wasting helped to erode cliffs back into their fault-bounded plateaus, widening the basins in-between. Some plateaus have been so severely reduced in size this way that they become mesas or even buttes. Monoclines form as a result of uplift bending the rock units. Eroded monoclines leave steeply tilted resistant rock called a hogback and the less steep version is a cuesta.

Great tension developed in the crust, probably related to changing plate motions far to the west. As the crust stretched, the Basin and Range province broke up into a multitude of down-dropped valleys and elongate mountains. Major faults, such as the Hurricane Fault, developed that separate the two regions. The dry climate was in large part a rainshadow effect resulting from the rise of the Sierra Nevada further west. Yet for some reason not fully understood, the neighboring Colorado Plateau was able to preserve its structural integrity and remained a single tectonic block.

A second mystery was that while the lower layers of the Plateau appeared to be sinking, overall the Plateau was rising. The reason for this was discovered upon analyzing data from the USARRAY project. It was found that the asthenosphere had invaded the overlying lithosphere. The asthenosphere erodes the lower levels of the Plateau. At the same time, as it cools, it expands and lifts the upper layers of the Plateau. Eventually, the great block of Colorado Plateau crust rose a kilometer higher than the Basin and Range. As the land rose, the streams responded by cutting ever deeper stream channels. The most well-known of these streams, the Colorado River, began to carve the Grand Canyon less than 6 million years ago in response to sagging caused by the opening of the Gulf of California to the southwest.

The Pleistocene epoch brought periodic ice ages and a cooler, wetter climate. This increased erosion at higher elevations with the introduction of alpine glaciers while mid-elevations were attacked by frost wedging and lower areas by more vigorous stream scouring. Pluvial lakes also formed during this time. Glaciers and pluvial lakes disappeared and the climate warmed and became drier with the start of Holocene epoch.

Read more about this topic:  Colorado Plateau