Collatz Conjecture - Statement of The Problem

Statement of The Problem

Consider the following operation on an arbitrary positive integer:

  • If the number is even, divide it by two.
  • If the number is odd, triple it and add one.

In modular arithmetic notation, define the function f as follows:

Now, form a sequence by performing this operation repeatedly, beginning with any positive integer, and taking the result at each step as the input at the next.

In notation:

(that is: is the value of applied to recursively times; )

or


{a_{i}} = \frac{1}{2}{a_{i-1}} - \frac{1}{4}(5a_{i-1}+2)((-1)^{a_{i-1}}-1)

(which yields for even and for odd ).

The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

That smallest i such that ai = 1 is called the total stopping time of n. The conjecture asserts that every n has a well-defined total stopping time. If, for some n, such an i doesn't exist, we say that n has infinite total stopping time and the conjecture is false.

If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence which does not contain 1. Such a sequence might enter a repeating cycle that excludes 1, or increase without bound. No such sequence has been found.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words statement of the, statement of, statement and/or problem:

    It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.
    John Dewey (1859–1952)

    I think, therefore I am is the statement of an intellectual who underrates toothaches.
    Milan Kundera (b. 1929)

    One is apt to be discouraged by the frequency with which Mr. Hardy has persuaded himself that a macabre subject is a poem in itself; that, if there be enough of death and the tomb in one’s theme, it needs no translation into art, the bold statement of it being sufficient.
    Rebecca West (1892–1983)

    The family environment in which your children are growing up is different from that in which you grew up. The decisions our parents made and the strategies they used were developed in a different context from what we face today, even if the “content” of the problem is the same. It is a mistake to think that our own experience as children and adolescents will give us all we need to help our children. The rules of the game have changed.
    Lawrence Kutner (20th century)