Collatz Conjecture - Statement of The Problem

Statement of The Problem

Consider the following operation on an arbitrary positive integer:

  • If the number is even, divide it by two.
  • If the number is odd, triple it and add one.

In modular arithmetic notation, define the function f as follows:

Now, form a sequence by performing this operation repeatedly, beginning with any positive integer, and taking the result at each step as the input at the next.

In notation:

(that is: is the value of applied to recursively times; )

or


{a_{i}} = \frac{1}{2}{a_{i-1}} - \frac{1}{4}(5a_{i-1}+2)((-1)^{a_{i-1}}-1)

(which yields for even and for odd ).

The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

That smallest i such that ai = 1 is called the total stopping time of n. The conjecture asserts that every n has a well-defined total stopping time. If, for some n, such an i doesn't exist, we say that n has infinite total stopping time and the conjecture is false.

If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence which does not contain 1. Such a sequence might enter a repeating cycle that excludes 1, or increase without bound. No such sequence has been found.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words statement of, statement and/or problem:

    The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.
    Andrew Jackson (1767–1845)

    After the first powerful plain manifesto
    The black statement of pistons, without more fuss
    But gliding like a queen, she leaves the station.
    Stephen Spender (1909–1995)

    Every reform was once a private opinion, and when it shall be a private opinion again, it will solve the problem of the age.
    Ralph Waldo Emerson (1803–1882)