Collatz Conjecture - Methods of Proof

Methods of Proof

There have been many methods of attack on the problem. For example, let A and B be integers, A being how many times the "3n+1" rule is used in a cycle, and B being how many times the "n/2" rule is used. Let x be the lowest number in a cycle then, regardless of what order the rules are used, we have:


\frac{3^A}{2^B}x + C = x

where C is the "excess" caused by the "+1" in the rule, and can be shown to be bigger than:


C \ge \frac{3^{A-1}}{2^B}

using geometric progression. Rearranging shows that the lowest number in the cycle satisfies:


x \ge \frac{3^{A-1}}{2^B-3^A}

which gives a lower bound for the lowest number in a cycle for a given cycle length. For large cycles the fraction 3A/2B would be expected to tend to 1, so that the lower bound would be large.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words methods of, methods and/or proof:

    Methods of thought which claim to give the lead to our world in the name of revolution have become, in reality, ideologies of consent and not of rebellion.
    Albert Camus (1913–1960)

    With a generous endowment of motherhood provided by legislation, with all laws against voluntary motherhood and education in its methods repealed, with the feminist ideal of education accepted in home and school, and with all special barriers removed in every field of human activity, there is no reason why woman should not become almost a human thing. It will be time enough then to consider whether she has a soul.
    Crystal Eastman (1881–1928)

    a meek humble Man of modest sense,
    Who preaching peace does practice continence;
    Whose pious life’s a proof he does believe,
    Mysterious truths, which no Man can conceive.
    John Wilmot, 2d Earl Of Rochester (1647–1680)