Coenzyme Q10 - Biosynthesis

Biosynthesis

Starting from acetyl-CoA, a multistep process of mevalonate pathway produces farnesyl-PP (FPP), the precursor for cholesterol, CoQ, dolichol, and isoprenylated proteins. An important enzyme in this pathway is HMG Co-A reductase, which is usually a target for intervention in cardiovascular complications. The "statin" family of cholesterol reducing medications block HMG Co-A reductase, so taking CoQ10 may alleviate a statin side effect of rhabdomyolysis. The long isoprenoid side-chain of CoQ is synthesized by trans-prenyltransferase, which condenses FPP with several molecules of isopentenyl-PP (IPP), all in the trans configuration. The next step involves condensation of this polyisoprenoid side-chain with 4-hydroxybenzoate, catalyzed by polyprenyl-4-hydroxy benzoate transferase. Hydroxybenzoate is synthesized from tyrosine or phenylalanine. In addition to their presence in mitochondria, these initial two reactions also occur in the endoplasmic reticulum and peroxisomes, indicating multiple sites of synthesis in animal cells. Increasing the endogenous biosynthesis of CoQ10 has attained attention in the recent years as a strategy to fight CoQ10 deficiency.

Genes involved include PDSS1, PDSS2, COQ2, and COQ8/CABC1.

Read more about this topic:  Coenzyme Q10