Examples
- In any space, .
- In any space X, X = cl(X).
- If X is the Euclidean space R of real numbers, then cl((0, 1)) = .
- If X is the Euclidean space R, then the closure of the set Q of rational numbers is the whole space R. We say that Q is dense in R.
- If X is the complex plane C = R2, then cl({z in C : |z| > 1}) = {z in C : |z| ≥ 1}.
- If S is a finite subset of a Euclidean space, then cl(S) = S. (For a general topological space, this property is equivalent to the T1 axiom.)
On the set of real numbers one can put other topologies rather than the standard one.
- If X = R, where R has the lower limit topology, then cl((0, 1)) = [0, 1).
- If one considers on R the topology in which every set is open (closed), then cl((0, 1)) = (0, 1).
- If one considers on R the topology in which the only open (closed) sets are the empty set and R itself, then cl((0, 1)) = R.
These examples show that the closure of a set depends upon the topology of the underlying space. The last two examples are special cases of the following.
- In any discrete space, since every set is open (closed), every set is equal to its closure.
- In any indiscrete space X, since the only open (closed) sets are the empty set and X itself, we have that the closure of the empty set is the empty set, and for every non-empty subset A of X, cl(A) = X. In other words, every non-empty subset of an indiscrete space is dense.
The closure of a set also depends upon in which space we are taking the closure. For example, if X is the set of rational numbers, with the usual subspace topology induced by the Euclidean space R, and if S = {q in Q : q2 > 2}, then S is closed in Q, and the closure of S in Q is S; however, the closure of S in the Euclidean space R is the set of all real numbers greater than or equal to
Read more about this topic: Closure (topology)
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)