Closed Operator - Importance of Self-adjoint Operators

Importance of Self-adjoint Operators

The class of self-adjoint operators is especially important in mathematical physics. Every self-adjoint operator is densely defined, closed and symmetric. The converse holds for bounded operators but fails in general. Self-adjointness is substantially more restricting than these three properties. The famous spectral theorem holds for self-adjoint operators. In combination with Stone's theorem on one-parameter unitary groups it shows that self-adjoint operators are precisely the infinitesimal generators of strongly continuous one-parameter unitary groups, see Self-adjoint operator#Self adjoint extensions in quantum mechanics. Such unitary groups are especially important for describing time evolution in classical and quantum mechanics.

Read more about this topic:  Closed Operator

Famous quotes containing the words importance of and/or importance:

    Think of the importance of Friendship in the education of men.... It will make a man honest; it will make him a hero; it will make him a saint. It is the state of the just dealing with the just, the magnanimous with the magnanimous, the sincere with the sincere, man with man.
    Henry David Thoreau (1817–1862)

    I ascribe a basic importance to the phenomenon of language.... To speak means to be in a position to use a certain syntax, to grasp the morphology of this or that language, but it means above all to assume a culture, to support the weight of a civilization.
    Frantz Fanon (1925–1961)