Introduction and Basic Properties
Specifically, a Clifford algebra is a unital associative algebra which contains and is generated by a vector space V equipped with a quadratic form Q. The Clifford algebra Cℓ(V, Q) is the "freest" algebra generated by V subject to the condition
where the product on the left is that of the algebra, and the 1 is its multiplicative identity.
The definition of a Clifford algebra endows it with more structure than a "bare" K-algebra: specifically it has a designated or privileged subspace that is isomorphic to V. Such a subspace cannot in general be uniquely determined given only a K-algebra isomorphic to the Clifford algebra.
If the characteristic of the ground field K is not 2, then one can rewrite this fundamental identity in the form
where ⟨u, v⟩ = (Q(u + v) − Q(u) − Q(v))/2 is the symmetric bilinear form associated with Q, via the polarization identity. The idea of being the "freest" or "most general" algebra subject to this identity can be formally expressed through the notion of a universal property, as done below.
Quadratic forms and Clifford algebras in characteristic 2 form an exceptional case. In particular, if char(K) = 2 it is not true that a quadratic form determines a symmetric bilinear form, or that every quadratic form admits an orthogonal basis. Many of the statements in this article include the condition that the characteristic is not 2, and are false if this condition is removed.
Read more about this topic: Clifford Algebra
Famous quotes containing the words introduction, basic and/or properties:
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“Man has lost the basic skill of the ape, the ability to scratch its back. Which gave it extraordinary independence, and the liberty to associate for reasons other than the need for mutual back-scratching.”
—Jean Baudrillard (b. 1929)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)