Spacecraft Design
The spacecraft was an octagonal prism 1.88 m high and 1.14 m across with two solar panels protruding on opposite sides parallel to the axis of the prism. A 42-inch-diameter (1,100 mm) high-gain fixed dish antenna was at one end of the prism, and the 489 N thruster at the other end. The sensor openings were all located together on one of the eight panels, 90 degrees from the solar panels, and protected in by a single sensor cover.
The spacecraft propulsion system consisted of a monopropellant hydrazine system for attitude control and a bipropellant nitrogen tetroxide and monomethyl hydrazine system for the maneuvers in space. The bipropellant system had a total capability of about 1,900 m/s with about 550 m/s required for lunar insertion and 540 m/s for lunar departure.
Attitude control was achieved with 12 small attitude control jets, two star tracker, and two inertial measurement units. The spacecraft was three-axis stabilized in lunar orbit via reaction wheels with a precision of 0.05 deg in control and 0.03 deg in knowledge. Power was provided by gimbaled, single axis, GaAs/Ge solar panels which charged a 15 A·h, 47 W·h/kg Nihau (Ni-H) common pressure vessel battery.
Spacecraft data processing was performed using a MIL-STD-1750A computer (1.7 MIPS) for savemode, attitude control, and housekeeping operations, a RISC 32-bit processor (18 MIPS) for image processing and autonomous operations, and an image compression system provided by the French Space Agency CNES. A data handling unit sequenced the cameras, operated the image compression system, and directed the data flow. Data was stored in a 2 Gbit dynamic solid state data recorder.
Read more about this topic: Clementine (spacecraft)
Famous quotes containing the word design:
“I begin with a design for a hearse.
For Christs sake not black
nor white eitherand not polished!
Let it be weatheredlike a farm wagon”
—William Carlos Williams (18831963)