CIDR Blocks
CIDR is principally a bitwise, prefix-based standard for the interpretation of IP addresses. It facilitates routing by allowing blocks of addresses to be grouped into single routing table entries. These groups, commonly called CIDR blocks, share an initial sequence of bits in the binary representation of their IP addresses. IPv4 CIDR blocks are identified using a syntax similar to that of IPv4 addresses: a dotted-decimal address, followed by a slash, then a number from 0 to 32, e.g., a.b.c.d/n. The dotted decimal portion is the IPv4 address. The number following the slash is the prefix length, the number of shared initial bits, counting from the most-significant bit of the address. When emphasizing only the size of a network, the address portion of the notation is usually omitted. Thus, a /20 is a CIDR block with an unspecified 20-bit prefix.
An IP address is part of a CIDR block, and is said to match the CIDR prefix if the initial n bits of the address and the CIDR prefix are the same. The length of an IPv4 address is 32 bits, an n-bit CIDR prefix leaves 32-n bits unmatched, meaning that 232-n IPv4 addresses match a given n-bit CIDR prefix. Shorter CIDR prefixes match more addresses, while longer prefixes match fewer. An address can match multiple CIDR prefixes of different lengths.
CIDR is also used for IPv6 addresses and the syntax semantic is identical. The prefix length can range from 0 to 128, due to the larger number of bits in the address. However, by convention a subnet on broadcast MAC layer networks always has 64-bit host identifiers. Larger prefixes are rarely used even on point-to-point links.
Read more about this topic: Classless Inter-Domain Routing
Famous quotes containing the word blocks:
“The quest for certainty blocks the search for meaning. Uncertainty is the very condition to impel man to unfold his powers.”
—Erich Fromm (19001980)