Class Field Theory - Prime Ideals

Prime Ideals

More than just the abstract description of G, it is essential for the purposes of number theory to understand how prime ideals decompose in the abelian extensions. The description is in terms of Frobenius elements, and generalises in a far-reaching way the quadratic reciprocity law that gives full information on the decomposition of prime numbers in quadratic fields. The class field theory project included the 'higher reciprocity laws' (cubic reciprocity) and so on.

Read more about this topic:  Class Field Theory

Famous quotes containing the words prime and/or ideals:

    In time, after a dozen years of centering their lives around the games boys play with one another, the boys’ bodies change and that changes everything else. But the memories are not erased of that safest time in the lives of men, when their prime concern was playing games with guys who just wanted to be their friendly competitors. Life never again gets so simple.
    Frank Pittman (20th century)

    Our chaotic economic situation has convinced so many of our young people that there is no room for them. They become uncertain and restless and morbid; they grab at false promises, embrace false gods and judge things by treacherous values. Their insecurity makes them believe that tomorrow doesn’t matter and the ineffectualness of their lives makes them deny the ideals which we of an older generation acknowledged.
    Hortense Odlum (1892–?)