Class Field Theory - Prime Ideals

Prime Ideals

More than just the abstract description of G, it is essential for the purposes of number theory to understand how prime ideals decompose in the abelian extensions. The description is in terms of Frobenius elements, and generalises in a far-reaching way the quadratic reciprocity law that gives full information on the decomposition of prime numbers in quadratic fields. The class field theory project included the 'higher reciprocity laws' (cubic reciprocity) and so on.

Read more about this topic:  Class Field Theory

Famous quotes containing the words prime and/or ideals:

    The prime purpose of being four is to enjoy being four—of secondary importance is to prepare for being five.
    Jim Trelease (20th century)

    With the breakdown of the traditional institutions which convey values, more of the burdens and responsibility for transmitting values fall upon parental shoulders, and it is getting harder all the time both to embody the virtues we hope to teach our children and to find for ourselves the ideals and values that will give our own lives purpose and direction.
    Neil Kurshan (20th century)