History
The origins of class field theory lie in the quadratic reciprocity law proved by Gauss. The generalisation took place as a long-term historical project, involving quadratic forms and their 'genus theory', work of Ernst Kummer and Leopold Kronecker/Kurt Hensel on ideals and completions, the theory of cyclotomic and Kummer extensions.
The first two class field theories were very explicit cyclotomic and complex multiplication class field theories. They used additional structures: in the case of the field of rational numbers they use roots of unity in the case of imaginary quadratic extensions of the field of rational numbers they use elliptic curves with complex multiplication and their points of finite order. Much later, the theory of Shimura provided another very explicit class field theory for a class of algebraic number fields. All these very explicit theories cannot be extended to work over arbitrary number field. In positive characteristic Kawada and Satake used Witt duality to get a very easy description of the -part of the reciprocity homomorphism.
However, general class field theory used different concepts and its constructions work over every global field.
The famous problems of David Hilbert stimulated further development which lead to the reciprocity laws, and proofs by Teiji Takagi, Phillip Furtwängler, Emil Artin, Helmut Hasse and many others. The crucial Takagi existence theorem was known by 1920 and all the main results by about 1930. One of the last classical conjectures to be proved was the principalisation property. The first proofs of class field theory used substantial analytic methods. In the 1930s and subsequently the use of infinite extensions and the theory of Wolfgang Krull of their Galois groups was found increasingly useful. It combines with Pontryagin duality to give a clearer if more abstract formulation of the central result, the Artin reciprocity law. An important step was the introduction of ideles by Claude Chevalley in 1930s. Their use replaced the classes of ideals and essentially clarified and simplified structures which describe abelian extensions of global fields. Most of the central results were proved by 1940.
After the results were reformulated in terms of group cohomology which became a standard way to learn class field theory for several generations of number theorists. One drawback of the cohomological method is its relative inexplicitness. As the result of local contributions by Bernard Dwork, John Tate, Michiel Hazewinkel and a local and global reinterpretation by Jürgen Neukirch and also in relation to the work on explicit reciprocity formulas by many mathematicians, a very explicit and cohomology free presentation of class field theory was established in the nineties, see e.g. the book of Neukirch.
Read more about this topic: Class Field Theory
Famous quotes containing the word history:
“If you look at history youll find that no state has been so plagued by its rulers as when power has fallen into the hands of some dabbler in philosophy or literary addict.”
—Desiderius Erasmus (c. 14661536)
“Throughout the history of commercial life nobody has ever quite liked the commission man. His function is too vague, his presence always seems one too many, his profit looks too easy, and even when you admit that he has a necessary function, you feel that this function is, as it were, a personification of something that in an ethical society would not need to exist. If people could deal with one another honestly, they would not need agents.”
—Raymond Chandler (18881959)
“Spain is an overflow of sombreness ... a strong and threatening tide of history meets you at the frontier.”
—Wyndham Lewis (18821957)