Generalizations of Class Field Theory
One natural development in number theory is to understand and construct nonabelian class field theories which provide information about general Galois extensions of global fields. Often, the Langlands correspondence is viewed as a nonabelian class field theory and indeed when fully established it will contain a very rich theory of nonabelian Galois extensions of global fields. However, the Langlands correspondence does not include as much arithmetical information about finite Galois extensions as class field theory does in the abelian case. It also does not include an analog of the existence theorem in class field theory, i.e. the concept of class fields is absent in the Langlands correspondence. There are several other nonabelian theories, local and global, which provide alternative to the Langlands correspondence point of view.
Another natural development in arithmetic geometry is to understand and construct class field theory which describes abelian extensions of higher local and global fields. The latter come as function fields of schemes of finite type over integers and their appropriate localization and completions. Higher local and global class field theory uses algebraic K-theory and appropriate Milnor K-groups replace which is in use in one-dimensional class field theory. Higher local and global class field theory was developed by A. Parshin, Kazuya Kato, Ivan Fesenko, Spencer Bloch, Shuji Saito and other mathematicians. There are attempts to develop higher global class field theory without using algebraic K-theory (G. Wiesend), but his approach does not involve higher local class field theory and a compatibility between the local and global theories.
Read more about this topic: Class Field Theory
Famous quotes containing the words class, field and/or theory:
“People ask how can a Jewish kid from the Bronx do preppy clothes? Does it have to do with class and money? It has to do with dreams.”
—Ralph Lauren (b. 1939)
“Is not the tremendous strength in men of the impulse to creative work in every field precisely due to their feeling of playing a relatively small part in the creation of living beings, which constantly impels them to an overcompensation in achievement?”
—Karen Horney (1885–1952)
“The weakness of the man who, when his theory works out into a flagrant contradiction of the facts, concludes “So much the worse for the facts: let them be altered,” instead of “So much the worse for my theory.””
—George Bernard Shaw (1856–1950)