Technology
At the beginning of the CB radio service, transmitters and receivers used vacuum tubes; solid-state transmitters were not widely available until 1965, after the introduction of RF-power transistors. Walkie-talkie hand-held units became affordable with the use of transistors. Early receivers did not implement all channels of the service; channels were controlled by plug-in quartz crystals, with one of several operating frequencies selected by a panel control in more expensive units. Superheterodyne receivers (using one or two conversion stages) were the norm in good-quality equipment, although low-cost toy-type units used superregenerative receivers. With the earliest sets two quartz crystals were needed for transmitting and receiving on each channel, which was costly. By the mid-1960s "mixer" circuits made frequency-synthesized radios possible, which reduced cost and allowed full coverage of all 23 channels with a smaller number of crystals (typically 14). The next improvement came during the mid-1970s; crystal synthesis was replaced by PLL technology using ICs, enabling 40-channel sets with only one crystal (10.240 MHz). Almost all were AM-only, although there were a few single sideband sets.
Most CB radios sold in the United States have the following features:
- Automatic noise limiter or noise blanker: Reduces background noise (such as spark ignition)
- CB/WX switch: Selects weather-radio receiver
- Automatic level control (ALC): Limits the transmitter modulation level to reduce distortion
- PA: Some transceivers can drive an external speaker and act as a low-power public address system, or "bullhorn".
- RF gain: Adjusts the RF amplifier gain of the receiver; used to reduce received background noise, and to reduce "clipping" due to over-amplification of already-strong signals (for example, when the receiver is near the transmitter)
- NOR/9/19: Quickly tunes preset channels for calling or emergency use
- SWR: Meter used to monitor reflected power caused by mismatched antennas and antenna cables
- Volume control
Microphone choices include:
- Dynamic microphone: Uses magnetic coil and permanent magnet
- Ceramic mic: Uses a piezoelectric element; rugged, low-cost but high-impedance
- Echo mic: Deliberately introduces distortion and echo into transmitted audio
- Electret microphone: Uses an electrostatic method to convert sound to electrical signals
- Noise-canceling microphone: Uses two elements to reduce background noise
- Power mic: An amplified microphone
Read more about this topic: Citizens Band Radio
Famous quotes containing the word technology:
“If we had a reliable way to label our toys good and bad, it would be easy to regulate technology wisely. But we can rarely see far enough ahead to know which road leads to damnation. Whoever concerns himself with big technology, either to push it forward or to stop it, is gambling in human lives.”
—Freeman Dyson (b. 1923)