Chorded Keyboard - History

History

The earliest known chord keyboard was part of the "five-needle" telegraph operator station, designed by Wheatstone and Cooke in 1836, in which any two of the five needles could point left or right to indicate letters on a grid. It was designed to be used by untrained operators (who would determine which keys to press by looking at the grid), and was not used where trained telegraph operators were available.

The first widespread use of a chord keyboard was in the stenotype machine used by court reporters, which was invented in 1868 and is still in use. But the output of the stenotype is a phonetic code that has to be transcribed later (usually by the same operator who produced the original output), rather than arbitrary text.

In 1874, the five-bit Baudot telegraph code and a matching 5-key chord keyboard was designed to be used with the operator forming the codes manually. The code is optimized for speed and low wear: chords were chosen so that the most common characters used the simplest chords. But telegraph operators were already using typewriters with QWERTY keyboards to "copy" received messages, and at the time it made more sense to build a typewriter that could generate the codes automatically, rather than making them learn to use a new input device.

Some early keypunch machines used a keyboard with 12 labeled keys to punch the correct holes in paper cards. The numbers 0 through 9 were represented by one punch; 26 letters were represented by combinations of two punches, and symbols were represented by combinations of two or three punches.

Braille (a writing system for the blind) uses either 6 or 8 tactile 'points' from which all letters and numbers are formed. When Louis Braille invented it, it was produced with a needle holing successively all needed points in a cardboard sheet. In 1892, Frank Haven Hall, superintendent of the Illinois Institute for the for the Education of the Blind, created the Hall Braille Writer, which was like a typewriter with 6 keys, one for each dot in a braille cell. The Perkins Brailler, first manufactured in 1951, uses a 6-key chord keyboard (plus a spacebar) to produce braille output, and has been very successful as a mass market affordable product. Braille, like Baudot, uses a number symbol and a shift symbol, which may be repeated for shift lock, to fit numbers and upper case into the 31 codes that 6 bits offer.

After World War II, with the arrival of electronics for reading chords and looking in tables of "codes", the postal sorting offices started to research chordic solutions to be able to employ people other than trained and expensive typists. In 1954, an important concept was discovered: chordic production is easier to master when the production is done at the release of the keys instead of when they are pressed.

Researchers at IBM investigated chord keyboards for both typewriters and computer data entry as early as 1959, with the idea that it might be faster than touch-typing if some chords were used to enter whole words or parts of words. One of their designs had 14 keys that were dimpled on the edges as well as the top, so one finger could press two adjacent keys for additional combinations. Their results were inconclusive, but research continued until at least 1978.

Doug Engelbart began experimenting with a keysets to use with the mouse in the mid 1960s. In a famous 1968 demonstration, Engelbart introduced a computer human interface that included the QWERTY keyboard, a three button mouse, and a five key keyset. Engelbart used the keyset with his left hand and the mouse with his right to type text and enter commands. To type a command Engelbart pressed one of the three buttons of the mouse.

Users in Engelbart's Augmentation Research Center at SRI became proficient with the mouse and keyset. In the 1970s the funding Engelbart's group received from the Advance Research Project Agency (ARPA) was cut and many key members of Engelbart's team went to work for Xerox PARC where they continued to experiment with the mouse and keyset. Keychord sets were used at Xerox PARC in the early 1980s, along with mice, GUIs, on the Xerox Star and Alto workstations. A one button version of the mouse was incorporated into the Apple Macintosh but Steve Jobs decided against incorporating the chorded keyset.

In the early 1980s, Philips Research labs at Redhill, Surrey did a brief study into small, cheap keyboards for entering text on a telephone. One solution made use of a grid of hexagonal keys with symbols inscribed into dimples in the keys that were either in the center of a key, across the boundary of two keys, or at the joining of three keys. Pressing down on one of the dimples would cause either one, two or three of the hexagonal buttons to be depressed at the same time, forming a chord that would be unique to that symbol. With this arrangement, a nine button keyboard with three rows of three hexagonal buttons could be fitted onto a telephone and could produce up to 33 different symbols. By choosing widely separated keys, one could employ one dimple as a 'shift' key to allow both letters and numbers to be produced. With eleven keys in a 3/4/4 arrangement, 43 symbols could be arranged allowing for lowercase text, numbers and a modest number of punctuation symbols to be represented along with a 'shift' function for accessing uppercase letters. Whilst this had the advantage of being usable by untrained users via 'hunt and peck' typing and requiring one less key switch than a conventional 12 button keypad, it had the disadvantage that some symbols required three times as much force to depress them as others which made it hard to achieve any speed with the device. That solution is still alive and proposed by Fastap and Unitap among others, and a commercial phone has been produced and promoted in Canada during 2006.

Read more about this topic:  Chorded Keyboard

Famous quotes containing the word history:

    the future is simply nothing at all. Nothing has happened to the present by becoming past except that fresh slices of existence have been added to the total history of the world. The past is thus as real as the present.
    Charlie Dunbar Broad (1887–1971)

    I cannot be much pleased without an appearance of truth; at least of possibility—I wish the history to be natural though the sentiments are refined; and the characters to be probable, though their behaviour is excelling.
    Frances Burney (1752–1840)

    If you look at history you’ll find that no state has been so plagued by its rulers as when power has fallen into the hands of some dabbler in philosophy or literary addict.
    Desiderius Erasmus (c. 1466–1536)