Statement For Principal Ideal Domains
For a principal ideal domain R the Chinese remainder theorem takes the following form: If u1, …, uk are elements of R which are pairwise coprime, and u denotes the product u1…uk, then the quotient ring R/uR and the product ring R/u1R× … × R/ukR are isomorphic via the isomorphism
such that
This map is well-defined and an isomorphism of rings; the inverse isomorphism can be constructed as follows. For each i, the elements ui and u/ui are coprime, and therefore there exist elements r and s in R with
Set ei = s u/ui. Then the inverse of f is the map
such that
This statement is a straightforward generalization of the above theorem about integer congruences: the ring Z of integers is a principal ideal domain, the surjectivity of the map f shows that every system of congruences of the form
can be solved for x, and the injectivity of the map f shows that all the solutions x are congruent modulo u.
Read more about this topic: Chinese Remainder Theorem
Famous quotes containing the words statement, principal, ideal and/or domains:
“He that writes to himself writes to an eternal public. That statement only is fit to be made public, which you have come at in attempting to satisfy your own curiosity.”
—Ralph Waldo Emerson (18031882)
“I would urge that the yeast of education is the idea of excellence, and the idea of excellence comprises as many forms as there are individuals, each of whom develops his own image of excellence. The school must have as one of its principal functions the nurturing of images of excellence.”
—Jerome S. Bruner (20th century)
“It is equally impossible to forget our Friends, and to make them answer to our ideal. When they say farewell, then indeed we begin to keep them company. How often we find ourselves turning our backs on our actual Friends, that we may go and meet their ideal cousins.”
—Henry David Thoreau (18171862)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)