Statement For General Rings
The general form of the Chinese remainder theorem, which implies all the statements given above, can be formulated for commutative rings and ideals. If R is a commutative ring and I1, …, Ik are ideals of R which are pairwise coprime (meaning that for all ), then the product I of these ideals is equal to their intersection, and the quotient ring R/I is isomorphic to the product ring R/I1 × R/I2 × … × R/Ik via the isomorphism
such that
Here is a version of the theorem where R is not required to be commutative:
Let R be any ring with 1 (not necessarily commutative) and be pairwise coprime 2-sided ideals. Then the canonical R-module homomorphism is onto, with kernel . Hence, (as R-modules).
Read more about this topic: Chinese Remainder Theorem
Famous quotes containing the words statement, general and/or rings:
“The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.”
—Polly Berrien Berends (20th century)
“You dont want a general houseworker, do you? Or a traveling companion, quiet, refined, speaks fluent French entirely in the present tense? Or an assistant billiard-maker? Or a private librarian? Or a lady car-washer? Because if you do, I should appreciate your giving me a trial at the job. Any minute now, I am going to become one of the Great Unemployed. I am about to leave literature flat on its face. I dont want to review books any more. It cuts in too much on my reading.”
—Dorothy Parker (18931967)
“If a man do not erect in this age his own tomb ere he dies, he shall live no longer in monument than the bell rings and the widow weeps.”
—William Shakespeare (15641616)