Chinese Remainder Theorem - Finding The Solution With Basic Algebra and Modular Arithmetic

Finding The Solution With Basic Algebra and Modular Arithmetic

For example, consider the problem of finding an integer x such that

\begin{align} x &\equiv 2 \pmod{3}\\ x &\equiv 3 \pmod{4}\\ x &\equiv 1 \pmod{5}.
\end{align}

A brute-force approach converts these congruences into sets and writes the elements out to the product of 3×4×5 = 60 (the solutions modulo 60 for each congruence):

x ∈ {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, …}
x ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, …}
x ∈ {1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, …}.

To find an x that satisfies all three congruences, intersect the three sets to get:

x ∈ {11, …}.

Which can be expressed as

Another way to find a solution is with basic algebra, modular arithmetic, and stepwise substitution.

We start by translating these equivalences into equations for some t, s, and u:

  • Equation 1: x = 2 + 3 × t (mod 3)
  • Equation 2: x = 3 + 4 × s (mod 4)
  • Equation 3: x = 1 + 5 × u (mod 5).

Start by substituting the x from equation 1 into equivalence 2: 2 + 3 × t = 3 (mod 4), hence 3 × t = 1 (mod 4), or t = (1/3) (mod 4) = 3 (mod 4), meaning that t = 3 + 4 × s for integer s.

Plug t into equation 1: x = 2 + 3 × t (mod 3) = 2 + 3 × (3 + 4 × s) (mod 3) = 11 + 12 × s (mod 3).

Plug this x into equivalence 3: 11 + 12 × s = 1 (mod 5). Casting out 5s, we get 1 + 2 × s = 1 (mod 5), or 2 × s = 0 (mod 5), meaning that s = 0 + 5 × u for integer u.

Finally, x = 11 + 12 × s = 11 + 12 × (5 × u) = 11 + (60 × u). Since 60 = lcm(3, 4, 5), we have solutions 11, 71, 131, 191, …

Read more about this topic:  Chinese Remainder Theorem

Famous quotes containing the words finding the, finding, solution, basic, algebra and/or arithmetic:

    Finding the perfect balance is getting harder and harder. We need to teach our children to be cautious without imparting fear, to learn right from wrong without being judgmental, to be assertive but not pushy, to stick to routines without sacrificing spontaneity, and to be determined but not stubborn.
    Fred G. Gosman (20th century)

    What Romantic terminology called genius or talent or inspiration is nothing other than finding the right road empirically, following one’s nose, taking shortcuts.
    Italo Calvino (1923–1985)

    I can’t quite define my aversion to asking questions of strangers. From snatches of family battles which I have heard drifting up from railway stations and street corners, I gather that there are a great many men who share my dislike for it, as well as an equal number of women who ... believe it to be the solution to most of this world’s problems.
    Robert Benchley (1889–1945)

    When you realize how hard it is to know the truth about yourself, you understand that even the most exhaustive and well-meaning autobiography, determined to tell the truth, represents, at best, a guess. There have been times in my life when I felt incredibly happy. Life was full. I seemed productive. Then I thought,”Am I really happy or am I merely masking a deep depression with frantic activity?” If I don’t know such basic things about myself, who does?
    Phyllis Rose (b. 1942)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)