A Constructive Algorithm To Find The Solution
The following algorithm only applies if the 's are pairwise coprime. (For simultaneous congruences when the moduli are not pairwise coprime, the method of successive substitution can often yield solutions.)
Suppose, as above, that a solution is required for the system of congruences:
Again, to begin, the product is defined. Then a solution x can be found as follows.
For each i the integers and are coprime. Using the extended Euclidean algorithm we can find integers and such that . Then, choosing the label, the above expression becomes:
Consider . The above equation guarantees that its remainder, when divided by, must be 1. On the other hand, since it is formed as, the presence of N guarantees a remainder of zero when divided by any when .
Because of this, and the multiplication rules allowed in congruences, one solution to the system of simultaneous congruences is:
For example, consider the problem of finding an integer x such that
Using the extended Euclidean algorithm, for x modulo 3 and 20, we find (−13) × 3 + 2 × 20 = 1, i.e. e1 = 40. For x modulo 4 and 15, we get (−11) × 4 + 3 × 15 = 1, i.e. e2 = 45. Finally, for x modulo 5 and 12, we get 5 × 5 + (−2) × 12 = 1, i.e. e3 = −24. A solution x is therefore 2 × 40 + 3 × 45 + 1 × (−24) = 191. All other solutions are congruent to 191 modulo 60, which means they are all congruent to 11 modulo 60.
Note: There are multiple implementations of the extended Euclidean algorithm which will yield different sets of, and . These sets however will produce the same solution; i.e., (−20)2 + (−15)3 + (−24)1 = −109 = 11 modulo 60.
Read more about this topic: Chinese Remainder Theorem
Famous quotes containing the words constructive, find and/or solution:
“Euphemisms are not, as many young people think, useless verbiage for that which can and should be said bluntly; they are like secret agents on a delicate mission, they must airily pass by a stinking mess with barely so much as a nod of the head, make their point of constructive criticism and continue on in calm forbearance. Euphemisms are unpleasant truths wearing diplomatic cologne.”
—Quentin Crisp (b. 1908)
“You have observed a skilful man reading Virgil. Well, that author is a thousand books to a thousand persons. Take the book into your two hands, and read your eyes out; you will never find what I find.”
—Ralph Waldo Emerson (18031882)
“I herewith commission you to carry out all preparations with regard to ... a total solution of the Jewish question in those territories of Europe which are under German influence.... I furthermore charge you to submit to me as soon as possible a draft showing the ... measures already taken for the execution of the intended final solution of the Jewish question.”
—Hermann Goering (18931946)
