Chinese Mathematics - Song and Yuan Mathematics

Song and Yuan Mathematics

Northern Song Dynasty mathematician Jia Xian developed an additive multiplicative method for extraction of square root and cubic root which implemented the "Horner" rule.

Four outstanding mathematicians arose during the Song Dynasty and Yuan Dynasty, particularly in the twelfth and thirteenth centuries: Yang Hui, Qin Jiushao, Li Zhi (Li Ye), and Zhu Shijie. Yang Hui, Qin Jiushao, Zhu Shijie all used the Horner-Ruffini method six hundred years earlier to solve certain types of simultaneous equations, roots, quadratic, cubic, and quartic equations. Yang Hui was also the first person in history to discover and prove "Pascal's Triangle", along with its binomial proof (although the earliest mention of the Pascal's triangle in China exists before the eleventh century AD). Li Zhi on the other hand, investigated on a form of algebraic geometry based on Tian yuan shu. His book; Ceyuan haijing revolutionized the idea of inscribing a circle into triangles, by turning this geometry problem by algebra instead of the traditional method of using Pythagorean theorem. Guo Shoujing of this era also worked on spherical trigonometry for precise astronomical calculations. At this point of mathematical history, a lot of modern western mathematics were already discovered by Chinese mathematicians. Things grew quiet for a time until the thirteenth century Renaissance of Chinese math. This saw Chinese mathematicians solving equations with methods Europe would not know until the eighteenth century. The high point of this era came with Zhu Shijie's two books Suanxue qimeng and the Siyuan yujian. In one case he reportedly gave a method equivalent to Gauss's pivotal condensation.

Qin Jiushao (c. 1202–1261) was the first to introduce the zero symbol into Chinese mathematics. Before this innovation, blank spaces were used instead of zeros in the system of counting rods. One of the most important contribution of Qin Jiushao was his method of solving high order numerical equations. Referring to Qin's solution of a 4th order equation, Yoshio Mikami put it: "Who can deny the fact of Horner's illustrious process being used in China at least nearly six long centuries earlier than in Europe?" Qin also solved a 10th order equation.

Pascal's triangle was first illustrated in China by Yang Hui in his book Xiangjie Jiuzhang Suanfa (详解九章算法), although it was described earlier around 1100 by Jia Xian. Although the Introduction to Computational Studies written by Zhu Shijie (fl. 13th century) in 1299 contained nothing new in Chinese algebra, it had a great impact on the development of Japanese mathematics.

Read more about this topic:  Chinese Mathematics

Famous quotes containing the words song and/or mathematics:

    I describe family values as responsibility towards others, increase of tolerance, compromise, support, flexibility. And essentially the things I call the silent song of life—the continuous process of mutual accommodation without which life is impossible.
    Salvador Minuchin (20th century)

    ... though mathematics may teach a man how to build a bridge, it is what the Scotch Universities call the humanities, that teach him to be civil and sweet-tempered.
    Amelia E. Barr (1831–1919)