Chi-squared Distribution - Relation To Other Distributions

Relation To Other Distributions

  • As, (normal distribution)
  • (Noncentral chi-squared distribution with non-centrality parameter )
  • If then has the chi-squared distribution
  • As a special case, if then has the chi-squared distribution
  • (The squared norm of k standard normally distributed variables is a chi-squared distribution with k degrees of freedom)
  • If and, then . (gamma distribution)
  • If then (chi distribution)
  • If, then is an exponential distribution. (See Gamma distribution for more.)
  • If (Rayleigh distribution) then
  • If (Maxwell distribution) then
  • If then (Inverse-chi-squared distribution)
  • The chi-squared distribution is a special case of type 3 Pearson distribution
  • If and are independent then (beta distribution)
  • If (uniform distribution) then
  • is a transformation of Laplace distribution
  • If then
  • chi-squared distribution is a transformation of Pareto distribution
  • Student's t-distribution is a transformation of chi-squared distribution
  • Student's t-distribution can be obtained from chi-squared distribution and normal distribution
  • Noncentral beta distribution can be obtained as a transformation of chi-squared distribution and Noncentral chi-squared distribution
  • Noncentral t-distribution can be obtained from normal distribution and chi-squared distribution

A chi-squared variable with k degrees of freedom is defined as the sum of the squares of k independent standard normal random variables.

If Y is a k-dimensional Gaussian random vector with mean vector μ and rank k covariance matrix C, then X = (Yμ)TC−1(Yμ) is chi-squared distributed with k degrees of freedom.

The sum of squares of statistically independent unit-variance Gaussian variables which do not have mean zero yields a generalization of the chi-squared distribution called the noncentral chi-squared distribution.

If Y is a vector of k i.i.d. standard normal random variables and A is a k×k idempotent matrix with rank k−n then the quadratic form YTAY is chi-squared distributed with k−n degrees of freedom.

The chi-squared distribution is also naturally related to other distributions arising from the Gaussian. In particular,

  • Y is F-distributed, Y ~ F(k1,k2) if where X1 ~ χ²(k1) and X2 ~ χ²(k2) are statistically independent.
  • If X is chi-squared distributed, then is chi distributed.
  • If X1 ~ χ2k1 and X2 ~ χ2k2 are statistically independent, then X1 + X2 ~ χ2k1+k2. If X1 and X2 are not independent, then X1 + X2 is not chi-squared distributed.

Read more about this topic:  Chi-squared Distribution

Famous quotes containing the words relation to and/or relation:

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    ... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.
    Mary Barnett Gilson (1877–?)