Chernoff Bound - The First Step in The Proof of Chernoff Bounds

The First Step in The Proof of Chernoff Bounds

The Chernoff bound for a random variable X, which is the sum of n independent random variables, is obtained by applying etX for some well-chosen value of t. This method was first applied by Sergei Bernstein to prove the related Bernstein inequalities.

From Markov's inequality and using independence we can derive the following useful inequality:

For any t > 0,

In particular optimizing over t and using independence we obtain,

(1)

Similarly,

and so,

Read more about this topic:  Chernoff Bound

Famous quotes containing the words step, proof and/or bounds:

    I don’t think the ladies in town accepted the fact that I worked. That was the point at which I said to myself, well, you’re always going to be out of step and you might as well face it.
    Ellen Rodgers (b. c. 1930)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)

    Great Wits are sure to Madness near alli’d
    And thin Partitions do their Bounds divide;
    Else, why should he, with Wealth and Honour blest,
    Refuse his Age the needful hours of Rest?
    John Dryden (1631–1700)