A Motivating Example
The simplest case of Chernoff bounds is used to bound the success probability of majority agreement for n independent, equally likely events.
A simple motivating example is to consider a biased coin. One side (say, Heads), is more likely to come up than the other, but you don't know which and would like to find out. The obvious solution is to flip it many times and then choose the side that comes up the most. But how many times do you have to flip it to be confident that you've chosen correctly?
In our example, let denote the event that the ith coin flip comes up Heads; suppose that we want to ensure we choose the wrong side with at most a small probability ε. Then, rearranging the above, we must have:
If the coin is noticeably biased, say coming up on one side 60% of the time (p = .6), then we can guess that side with 95% accuracy after 150 flips. If it is 90% biased, then a mere 10 flips suffices. If the coin is only biased a tiny amount, like most real coins are, the number of necessary flips becomes much larger.
More practically, the Chernoff bound is used in randomized algorithms (or in computational devices such as quantum computers) to determine a bound on the number of runs necessary to determine a value by majority agreement, up to a specified probability. For example, suppose an algorithm (or machine) A computes the correct value of a function f with probability p > 1/2. If we choose n satisfying the inequality above, the probability that a majority exists and is equal to the correct value is at least 1 − ε, which for small enough ε is quite reliable. If p is a constant, ε diminishes exponentially with growing n, which is what makes algorithms in the complexity class BPP efficient.
Notice that if p is very close to 1/2, the necessary n can become very large. For example, if p = 1/2 + 1/2m, as it might be in some PP algorithms, the result is that n is bounded below by an exponential function in m:
Read more about this topic: Chernoff Bound
Famous quotes containing the word motivating:
“...one of my motivating forces has been to recreate the world I know into a world I wish I could be in. Hence my optimism and happy endings. But Ive never dreamed I could actually reshape the real world.”
—Kristin Hunter (b. 1931)