Chemical Formulas

Chemical Formulas

A chemical formula is a way of expressing information about the proportions of atoms that constitute a particular chemical compound, using a single line of chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, and plus (+) and minus (–) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula contains no words.

The simplest types of such formulas are called empirical formulas, which use only letters and numbers indicating atomic proportional ratios (the numerical proportions of atoms of one type to those of other types). Molecular formulas indicate the simple numbers of each type of atom in a molecule of a molecular substance, and are thus sometimes the same as empirical formulas (for molecules that only have one atom of a particular type), and at other times require larger numbers than do empirical formulas. An example of the difference is the empirical formula for glucose, which is CH2O, while its molecular formula requires all numbers to be increased by a factor of six, giving C6H12O6.

Sometimes a chemical formula is complicated by being written as a condensed formula (or condensed molecular formula, occasionally called a "semi-structural formula"), which conveys additional information about the particular ways in which the atoms are chemically bonded together, either in covalent bonds, ionic bonds, or various combinations of these types. This is possible if the relevant bonding is easy to show in one dimension. An example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. However, even a condensed chemical formula is necessarily limited in its ability to show complex bonding relationships between atoms, especially atoms that have bonds to four or more different substituents.

Since a chemical formula must be expressed as a single line of chemical element symbols, it often cannot be as informative as a true structural formula, which is a graphical representation of the spacial relationship between atoms in chemical compounds (see for example the figure for butane structural and chemical formulas, at right). For reasons of structural complexity, there is no condensed chemical formula (or semi-structural formula) that specifies glucose (and there exist many different molecules, for example fructose and mannose, have the same molecular formula C6H1206 as glucose). Linear equivalent chemical names exist that can and do specify any complex structural formula, but these names must use many terms (words), rather than the simple element symbols, numbers, and simple typographical symbols that define a chemical formula.

Chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. While, as noted, chemical formulas do not have the full power of structural formulas to show chemical relationships between atoms, they are sufficient to keep track of numbers of atoms and numbers of electical charges in chemical reactions, thus balancing chemical equations so that these equations can be used in chemical problems involving conservation of atoms, and conservation of electric charge.

Read more about Chemical Formulas:  Overview, Simple Empirical Formulas, Condensed Formulas in Organic Chemistry Implying Molecular Geometry and Structural Formulas, Chemical Names in Answer To Limitations of Chemical Formulas, Polymers in Condensed Formulas, Ions in Condensed Formulas, Isotopes, Trapped Atoms, Non-stoichiometric Chemical Formulas, General Forms For Organic Compounds, Hill System

Famous quotes containing the words chemical and/or formulas:

    Ants are so much like human beings as to be an embarrassment. They farm fungi, raise aphids as livestock, launch armies into war, use chemical sprays to alarm and confuse enemies, capture slaves, engage in child labor, exchange information ceaselessly. They do everything but watch television.
    Lewis Thomas (b. 1913)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)