Molecular Geometry and Structural Formulas
The connectivity of a molecule often has a strong influence on its physical and chemical properties and behavior. Two molecules composed of the same numbers of the same types of atoms (i.e. a pair of isomers) might have completely different chemical and/or physical properties if the atoms are connected differently or in different positions. In such cases, a structural formula is useful, as it illustrates which atoms are bonded to which other ones. From the connectivity, it is often possible to deduce the approximate shape of the molecule.
A chemical formula represents the types and spatial arrangement of bonds in the chemical, though it does not necessarily specify the exact isomer. For example ethane consists of two carbon atoms single-bonded to each other, with each carbon atom having three hydrogen atoms bonded to it. Its chemical formula can be rendered as CH3CH3. In ethylene there is a double bond between the carbon atoms (and thus each carbon only has two hydrogens), therefore the chemical formula may be written: CH2CH2, and the fact that there is a double bond between the carbons is implicit because carbon has a valence of four. However, a more explicit method is to write H2C=CH2 or less commonly H2C::CH2. The two lines (or two pairs of dots) indicate that a double bond connects the atoms on either side of them.
A triple bond may be expressed with three lines or pairs of dots, and if there may be ambiguity, a single line or pair of dots may be used to indicate a single bond.
Molecules with multiple functional groups that are the same may be expressed by enclosing the repeated group in round brackets. For example isobutane may be written (CH3)3CH. This semi-structural formula implies a different connectivity from other molecules that can be formed using the same atoms in the same proportions (isomers). The formula (CH3)3CH implies a central carbon atom attached to one hydrogen atom and three CH3 groups. The same number of atoms of each element (10 hydrogens and 4 carbons, or C4H10) may be used to make a straight chain molecule, butane: CH3CH2CH2CH3.
The alkene but-2-ene has two isomers which the chemical formula CH3CH=CHCH3 does not identify. The relative position of the two methyl groups must be indicated by additional notation denoting whether the methyl groups are on the same side of the double bond (cis or Z) or on the opposite sides from each other (trans or E).
Read more about this topic: Chemical Formula
Famous quotes containing the words geometry, structural and/or formulas:
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)
“The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the readers eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.”
—J. David Bolter (b. 1951)
“You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.”
—Hermann Hesse (18771962)