Chebyshev Polynomials - Explicit Expressions

Explicit Expressions

Different approaches to defining Chebyshev polynomials lead to different explicit expressions such as:

T_n(x) =
\begin{cases}
\cos(n\arccos(x)), & \ x \in \\
\cosh(n \, \mathrm{arccosh}(x)), & \ x \ge 1 \\
(-1)^n \cosh(n \, \mathrm{arccosh}(-x)), & \ x \le -1 \\
\end{cases} \,\!



\begin{align}
T_n(x) & = \frac{(x-\sqrt{x^2-1})^n+(x+\sqrt{x^2-1})^n}{2} \\
& = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k} \\
& = x^n \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (1 - x^{-2})^k \\
& = \frac{n}{2}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k \frac{(n-k-1)!}{k!(n-2k)!}~(2x)^{n-2k} \quad (n>0) \\
& = n \sum_{k=0}^{n}(-2)^{k} \frac{(n+k-1)!} {(n-k)!(2k)!}(1 - x)^k \quad (n>0)\\
& = \, _2F_1\left(-n,n;\frac 1 2; \frac{1-x} 2 \right) \\
\end{align}



\begin{align}
U_n(x) & = \frac{(x+\sqrt{x^2-1})^{n+1} - (x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} \\
& = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k} \\
& = x^n \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (1 - x^{-2})^k \\
& =\sum_{k=0}^{\lfloor n/2\rfloor} \binom{2k-(n+1)}{k}~(2x)^{n-2k} \quad (n>0)\\
& =\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k \binom{n-k}{k}~(2x)^{n-2k} \quad (n>0)\\
& = \sum_{k=0}^{n}(-2)^{k} \frac{(n+k+1)!} {(n-k)!(2k+1)!}(1 - x)^k \quad (n>0)\\
& = (n+1) \, _2F_1\left(-n,n+2; \tfrac{3}{2}; \tfrac{1}{2}\left \right)
\end{align}

where is a hypergeometric function.

Read more about this topic:  Chebyshev Polynomials

Famous quotes containing the words explicit and/or expressions:

    I think “taste” is a social concept and not an artistic one. I’m willing to show good taste, if I can, in somebody else’s living room, but our reading life is too short for a writer to be in any way polite. Since his words enter into another’s brain in silence and intimacy, he should be as honest and explicit as we are with ourselves.
    John Updike (b. 1932)

    Its idea of “production value” is spending a million dollars dressing up a story that any good writer would throw away. Its vision of the rewarding movie is a vehicle for some glamour-puss with two expressions and eighteen changes of costume, or for some male idol of the muddled millions with a permanent hangover, six worn-out acting tricks, the build of a lifeguard, and the mentality of a chicken-strangler.
    Raymond Chandler (1888–1959)