Chebyshev Polynomials - Definition

Definition

The Chebyshev polynomials of the first kind are defined by the recurrence relation


\begin{align}
T_0(x) & = 1 \\
T_1(x) & = x \\
T_{n+1}(x) & = 2xT_n(x) - T_{n-1}(x).
\end{align}

The conventional generating function for Tn is

The exponential generating function is

The generating function relevant for 2-dimensional potential theory and multipole expansion is

The Chebyshev polynomials of the second kind are defined by the recurrence relation


\begin{align}
U_0(x) & = 1 \\
U_1(x) & = 2x \\
U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x).
\end{align}

One example of a generating function for Un is

Read more about this topic:  Chebyshev Polynomials

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)