As A Basis Set
In the appropriate Sobolev space, the set of Chebyshev polynomials form a complete basis set, so that a function in the same space can, on −1 ≤ x ≤ 1 be expressed via the expansion:
Furthermore, as mentioned previously, the Chebyshev polynomials form an orthogonal basis which (among other things) implies that the coefficients an can be determined easily through the application of an inner product. This sum is called a Chebyshev series or a Chebyshev expansion.
Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart. These attributes include:
- The Chebyshev polynomials form a complete orthogonal system.
- The Chebyshev series converges to ƒ(x) if the function is piecewise smooth and continuous. The smoothness requirement can be relaxed in most cases — as long as there are a finite number of discontinuities in ƒ(x) and its derivatives.
- At a discontinuity, the series will converge to the average of the right and left limits.
The abundance of the theorems and identities inherited from Fourier series make the Chebyshev polynomials important tools in numeric analysis; for example they are the most popular general purpose basis functions used in the spectral method, often in favor of trigonometric series due to generally faster convergence for continuous functions (Gibbs' phenomenon is still a problem).
Read more about this topic: Chebyshev Polynomials
Famous quotes containing the words basis and/or set:
“The primacy of the word, basis of the human psyche, that has in our age been used for mind-bending persuasion and brain-washing pulp, disgraced by Goebbels and debased by advertising copy, remains a force for freedom that flies out between all bars.”
—Nadine Gordimer (b. 1923)
“Persons who insist to themselves that under one set of conditions only can they lead interesting and satisfying lives lay themselves open to bitter disappointments and frustrations.”
—Hortense Odlum (1892?)