Mathematics
Peirce's most important work in pure mathematics was in logical and foundational areas. He also worked on linear algebra, matrices, various geometries, topology and Listing numbers, Bell numbers, graphs, the four-color problem, and the nature of continuity.
He worked on applied mathematics in economics, engineering, and map projections (such as the Peirce quincuncial projection), and was especially active in probability and statistics.
- Discoveries
Peirce made a number of striking discoveries in formal logic and foundational mathematics, nearly all of which came to be appreciated only long after he died:
In 1860 he suggested a cardinal arithmetic for infinite numbers, years before any work by Georg Cantor (who completed his dissertation in 1867) and without access to Bernard Bolzano's 1851 (posthumous) Paradoxien des Unendlichen.
↓ The Peirce arrow,symbol for "(neither)...nor...", also called the Quine dagger.
In 1880–81 he showed how Boolean algebra could be done via a repeated sufficient single binary operation (logical NOR), anticipating Henry M. Sheffer by 33 years. (See also De Morgan's Laws).
In 1881 he set out the axiomatization of natural number arithmetic, a few years before Richard Dedekind and Giuseppe Peano. In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.
In 1885 he distinguished between first-order and second-order quantification. In the same paper he set out what can be read as the first (primitive) axiomatic set theory, anticipating Zermelo by about two decades (Brady 2000, pp. 132–3).
In 1886 he saw that Boolean calculations could be carried out via electrical switches, anticipating Claude Shannon by more than 50 years.
By the later 1890s he was devising existential graphs, a diagrammatic notation for the predicate calculus. Based on them are John F. Sowa's conceptual graphs and Sun-Joo Shin's diagrammatic reasoning.
- The New Elements of Mathematics
Peirce wrote drafts for an introductory textbook, with the working title The New Elements of Mathematics, that presented mathematics from an original standpoint. Those drafts and many other of his previously unpublished mathematical manuscripts finally appeared in The New Elements of Mathematics by Charles S. Peirce (1976), edited by mathematician Carolyn Eisele.
- Nature of mathematics
Peirce agreed with Auguste Comte in regarding mathematics as more basic than philosophy and the special sciences (of nature and mind). Peirce classified mathematics into three subareas: (1) mathematics of logic, (2) discrete series, and (3) pseudo-continua (as he called them, including the real numbers) and continua. Influenced by his father Benjamin, Peirce argued that mathematics studies purely hypothetical objects and is not just the science of quantity but is more broadly the science which draws necessary conclusions; that mathematics aids logic, not vice versa; and that logic itself is part of philosophy and is the science about drawing conclusions necessary and otherwise.
Read more about this topic: Charles Sanders Peirce
Famous quotes containing the word mathematics:
“Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.”
—Walter Reisch (19031963)
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)