Characteristic Polynomial of A Product of Two Matrices
If A and B are two square n×n matrices then characteristic polynomials of AB and BA coincide:
More generally, if A is m×n-matrix and B is n×m matrices such that m<n, then AB is m×m and BA is n×n matrix. One has
To prove the first result, recognize that the equation to be proved, as a polynomial in t and in the entries of A and B is a universal polynomial identity. It therefore suffices to check it on an open set of parameter values in the complex numbers. The tuples (A,B,t) where A is an invertible complex n by n matrix, B is any complex n by n matrix, and t is any complex number from an open set in complex space of dimension 2n2 + 1. When A is non-singular our result follows from the fact that AB and BA are similar:
Read more about this topic: Characteristic Polynomial
Famous quotes containing the word product:
“Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.”
—William Hazlitt (17781830)