Characteristic Polynomial of A Product of Two Matrices
If A and B are two square n×n matrices then characteristic polynomials of AB and BA coincide:
More generally, if A is m×n-matrix and B is n×m matrices such that m<n, then AB is m×m and BA is n×n matrix. One has
To prove the first result, recognize that the equation to be proved, as a polynomial in t and in the entries of A and B is a universal polynomial identity. It therefore suffices to check it on an open set of parameter values in the complex numbers. The tuples (A,B,t) where A is an invertible complex n by n matrix, B is any complex n by n matrix, and t is any complex number from an open set in complex space of dimension 2n2 + 1. When A is non-singular our result follows from the fact that AB and BA are similar:
Read more about this topic: Characteristic Polynomial
Famous quotes containing the word product:
“Poetry, whose material is language, is perhaps the most human and least worldly of the arts, the one in which the end product remains closest to the thought that inspired it.... Of all things of thought, poetry is the closest to thought, and a poem is less a thing than any other work of art ...”
—Hannah Arendt (19061975)