Characteristic Polynomial of A Product of Two Matrices
If A and B are two square n×n matrices then characteristic polynomials of AB and BA coincide:
More generally, if A is m×n-matrix and B is n×m matrices such that m<n, then AB is m×m and BA is n×n matrix. One has
To prove the first result, recognize that the equation to be proved, as a polynomial in t and in the entries of A and B is a universal polynomial identity. It therefore suffices to check it on an open set of parameter values in the complex numbers. The tuples (A,B,t) where A is an invertible complex n by n matrix, B is any complex n by n matrix, and t is any complex number from an open set in complex space of dimension 2n2 + 1. When A is non-singular our result follows from the fact that AB and BA are similar:
Read more about this topic: Characteristic Polynomial
Famous quotes containing the word product:
“Culture is a sham if it is only a sort of Gothic front put on an iron buildinglike Tower Bridgeor a classical front put on a steel framelike the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a livingnot something added, like sugar on a pill.”
—Eric Gill (18821940)