Properties
Each Chaitin constant Ω has the following properties:
- It is algorithmically random. This means that the shortest program to output the first n bits of Ω must be of size at least n-O(1). This is because, as in the Goldbach example, those n bits enable us to find out exactly which programs halt among all those of length at most n.
- It is a normal number, which means that its digits are equidistributed as if they were generated by tossing a fair coin.
- It is not a computable number; there is no computable function that enumerates its binary expansion, as discussed below.
- The set of rational numbers q such that q < Ω is computably enumerable; a real number with such a property is called a left-c.e. real number in recursion theory.
- The set of rational numbers q such that q > Ω is not computably enumerable.
- Ω is an arithmetical number.
- It is Turing equivalent to the halting problem and thus at level of the arithmetical hierarchy.
Not every set that is Turing equivalent to the halting problem is a halting probability. A finer equivalence relation, Solovay equivalence, can be used to characterize the halting probabilities among the left-c.e. reals.
Read more about this topic: Chaitin's Constant
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)