Chaitin's Constant - Properties

Properties

Each Chaitin constant Ω has the following properties:

  • It is algorithmically random. This means that the shortest program to output the first n bits of Ω must be of size at least n-O(1). This is because, as in the Goldbach example, those n bits enable us to find out exactly which programs halt among all those of length at most n.
  • It is a normal number, which means that its digits are equidistributed as if they were generated by tossing a fair coin.
  • It is not a computable number; there is no computable function that enumerates its binary expansion, as discussed below.
  • The set of rational numbers q such that q < Ω is computably enumerable; a real number with such a property is called a left-c.e. real number in recursion theory.
  • The set of rational numbers q such that q > Ω is not computably enumerable.
  • Ω is an arithmetical number.
  • It is Turing equivalent to the halting problem and thus at level of the arithmetical hierarchy.

Not every set that is Turing equivalent to the halting problem is a halting probability. A finer equivalence relation, Solovay equivalence, can be used to characterize the halting probabilities among the left-c.e. reals.

Read more about this topic:  Chaitin's Constant

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)