Chaitin's Constant - Definition

Definition

Let PF be the domain of a prefix-free universal computable function F. The constant ΩF is then defined as

,

where denotes the length of a string p. This is an infinite sum which has one summand for every p in the domain of F. The requirement that the domain be prefix-free, together with Kraft's inequality, ensures that this sum converges to a real number between 0 and 1. If F is clear from context then ΩF may be denoted simply Ω, although different prefix-free universal computable functions lead to different values of Ω.

Read more about this topic:  Chaitin's Constant

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)