Chaitin's Constant - Background

Background

The definition of a halting probability relies on the existence of prefix-free universal computable functions. Such a function, intuitively, represents a programming language with the property that no valid program can be obtained as a proper extension of another valid program.

Suppose that F is a partial function that takes one argument, a finite binary string, and possibly returns a single binary string as output. The function F is called computable if there is a Turing machine that computes it.

The function F is called universal if the following property holds: for every computable function f of a single variable there is a string w such that for all x, F(w x) = f(x); here w x represents the concatenation of the two strings w and x. This means that F can be used to simulate any computable function of one variable. Informally, w represents a "script" for the computable function f, and F represents an "interpreter" that parses the script as a prefix of its input and then executes it on the remainder of input. Note that for any fixed w the function f(x) = F(w x) is computable; thus the universality property states that all computable functions of one variable can be obtained in this fashion.

The domain of F is the set of all inputs p on which it is defined. For F that are universal, such a p can generally be seen both as the concatenation of a program part and a data part, and as a single program for the function F.

The function F is called prefix-free if there are no two elements p, p′ in its domain such that p′ is a proper extension of p. This can be rephrased as: the domain of F is a prefix-free code (instantaneous code) on the set of finite binary strings. A simple way to enforce prefix-free-ness is to use machines whose means of input is a binary stream from which bits can be read one at a time. There is no end-of-stream marker; the end of input is determined by when the universal machine decides to stop reading more bits. Here, the difference between the two notions of program mentioned in the last paragraph becomes clear; one is easily recognized by some grammar, while the other requires arbitrary computation to recognize.

The domain of any universal computable function is a computably enumerable set but never a computable set. The domain is always Turing equivalent to the halting problem.

Read more about this topic:  Chaitin's Constant

Famous quotes containing the word background:

    I had many problems in my conduct of the office being contrasted with President Kennedy’s conduct in the office, with my manner of dealing with things and his manner, with my accent and his accent, with my background and his background. He was a great public hero, and anything I did that someone didn’t approve of, they would always feel that President Kennedy wouldn’t have done that.
    Lyndon Baines Johnson (1908–1973)

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)