Chain Complex - Chain Maps

Chain Maps

A chain map f between two chain complexes and is a sequence of module homomorphisms for each n that commutes with the boundary operators on the two chain complexes: . Such a map sends cycles to cycles and boundaries to boundaries, and thus descends to a map on homology:.

A continuous map of topological spaces induces chain maps in both the singular and de Rham chain complexes described above (and in general for the chain complex defining any homology theory of topological spaces) and thus a continuous map induces a map on homology. Because the map induced on a composition of maps is the composition of the induced maps, these homology theories are functors from the category of topological spaces with continuous maps to the category of abelian groups with group homomorphisms.

It is worth noticing that the concept of chain map reduces to the one of boundary through the construction of the cone of a chain map.

Read more about this topic:  Chain Complex

Famous quotes containing the words chain and/or maps:

    It could not have come down to us so far,
    Through the interstices of things ajar
    On the long bead chain of repeated birth,
    To be a bird while we are men on earth,
    Robert Frost (1874–1963)

    Living in cities is an art, and we need the vocabulary of art, of style, to describe the peculiar relationship between man and material that exists in the continual creative play of urban living. The city as we imagine it, then, soft city of illusion, myth, aspiration, and nightmare, is as real, maybe more real, than the hard city one can locate on maps in statistics, in monographs on urban sociology and demography and architecture.
    Jonathan Raban (b. 1942)