Central Angle - Angular Distance Formulary

Angular Distance Formulary

The angular distance can be calculated either directly as the TvL difference, or via the common coordinates (here, either SAw, SBw value set can be used):

\begin{align}{}_{\color{white}.}\\\Delta\widehat{\sigma}
&=\widehat{\sigma}_f\;-\;\widehat{\sigma}_s,\\
&=\arcsin\!\left(\sqrt{{S\!A}^2+{S\!B}^2}\,\right),\\
&\quad{}^{\mathit{(can\,only\,find\,the\,first\,quadrant,\,i.e.,\;up\,to\,90^\circ)}}\\
&=\arccos\!\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\,\Big),\\
&\quad{}^{\mathit{(not\,recommended\,for\,small\,angles,\;due\,to\,rounding\,error)}}\\
&=\arctan\!\left(\frac{\sqrt{{S\!A}^2+{S\!B}^2}}{\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)}\right),\\{}^{\color{white}.}\end{align}\,\!

and, using half-angles,

\begin{align}{}_{\color{white}.}\\
&=2\arcsin\!\left(\sqrt{\sin^2\!\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arccos\!\left(\sqrt{\cos^2\!\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arctan\!\left(\sqrt{\frac{\sin^2\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\Big(\frac{\Delta\lambda}{2}\Big)}{\cos^2\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\Big(\frac{\Delta\lambda}{2}\Big)}}\,\right).\\{}^{\color{white}.}\end{align}\,\!

It can, as well, be found by means of finding the chord length via Cartesian subtraction:

\begin{align}
&\Delta{X}=\cos(\phi_f)\cos(\lambda_f) - \cos(\phi_s)\cos(\lambda_s);\\
&\Delta{Y}=\cos(\phi_f)\sin(\lambda_f) - \cos(\phi_s)\sin(\lambda_s);\\
&\Delta{Z}=\sin(\phi_f) - \sin(\phi_s);\\
&C_h=\sqrt{(\Delta{X})^2+(\Delta{Y})^2+(\Delta{Z})^2};\\
&\Delta\widehat{\sigma}=2\arcsin\left(\frac{C_h}{2}\right).\end{align}\,\!

Also, by using Cartesian products rather than differences, the origin of the spherical cosine for sides becomes apparent:

\begin{align}
{\scriptstyle{\Pi}}X&=\cos(\phi_s)\cos(\phi_f)\cos(\lambda_s)\cos(\lambda_f);\\
{\scriptstyle{\Pi}}Y&=\cos(\phi_s)\cos(\phi_f)\sin(\lambda_s)\sin(\lambda_f);\\
{\scriptstyle{\Pi}}Z&=\sin(\phi_s)\sin(\phi_f);\\
\frac{{\scriptstyle{\Pi}}X\!\!+\!{\scriptstyle{\Pi}}Y}{\cos(\phi_s)\cos(\phi_f)}&=\cos(\lambda_s)\cos(\lambda_f)+\sin(\lambda_s)\sin(\lambda_f)=\cos(\Delta\lambda);\\
\Delta\widehat{\sigma}&=\arccos\Big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y+{\scriptstyle{\Pi}}Z\Big)
=\arccos\Big({\scriptstyle{\Pi}}Z+\big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y\big)\Big),\\
&=\arccos\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\Big).\end{align}\,\!

There is also a logarithmical form:

Read more about this topic:  Central Angle

Famous quotes containing the word distance:

    After climbing a great hill, one only finds that there are many more hills to climb. I have taken a moment here to rest, to steal a view of the glorious vista that surrounds me, to look back on the distance I have come. But I can rest only for a moment, for with freedom comes responsibilities, and I dare not linger, for my long walk is not yet ended.
    Nelson Mandela (b. 1918)