Central Angle - Angular Distance Formulary

Angular Distance Formulary

The angular distance can be calculated either directly as the TvL difference, or via the common coordinates (here, either SAw, SBw value set can be used):

\begin{align}{}_{\color{white}.}\\\Delta\widehat{\sigma}
&=\widehat{\sigma}_f\;-\;\widehat{\sigma}_s,\\
&=\arcsin\!\left(\sqrt{{S\!A}^2+{S\!B}^2}\,\right),\\
&\quad{}^{\mathit{(can\,only\,find\,the\,first\,quadrant,\,i.e.,\;up\,to\,90^\circ)}}\\
&=\arccos\!\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\,\Big),\\
&\quad{}^{\mathit{(not\,recommended\,for\,small\,angles,\;due\,to\,rounding\,error)}}\\
&=\arctan\!\left(\frac{\sqrt{{S\!A}^2+{S\!B}^2}}{\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)}\right),\\{}^{\color{white}.}\end{align}\,\!

and, using half-angles,

\begin{align}{}_{\color{white}.}\\
&=2\arcsin\!\left(\sqrt{\sin^2\!\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arccos\!\left(\sqrt{\cos^2\!\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arctan\!\left(\sqrt{\frac{\sin^2\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\Big(\frac{\Delta\lambda}{2}\Big)}{\cos^2\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\Big(\frac{\Delta\lambda}{2}\Big)}}\,\right).\\{}^{\color{white}.}\end{align}\,\!

It can, as well, be found by means of finding the chord length via Cartesian subtraction:

\begin{align}
&\Delta{X}=\cos(\phi_f)\cos(\lambda_f) - \cos(\phi_s)\cos(\lambda_s);\\
&\Delta{Y}=\cos(\phi_f)\sin(\lambda_f) - \cos(\phi_s)\sin(\lambda_s);\\
&\Delta{Z}=\sin(\phi_f) - \sin(\phi_s);\\
&C_h=\sqrt{(\Delta{X})^2+(\Delta{Y})^2+(\Delta{Z})^2};\\
&\Delta\widehat{\sigma}=2\arcsin\left(\frac{C_h}{2}\right).\end{align}\,\!

Also, by using Cartesian products rather than differences, the origin of the spherical cosine for sides becomes apparent:

\begin{align}
{\scriptstyle{\Pi}}X&=\cos(\phi_s)\cos(\phi_f)\cos(\lambda_s)\cos(\lambda_f);\\
{\scriptstyle{\Pi}}Y&=\cos(\phi_s)\cos(\phi_f)\sin(\lambda_s)\sin(\lambda_f);\\
{\scriptstyle{\Pi}}Z&=\sin(\phi_s)\sin(\phi_f);\\
\frac{{\scriptstyle{\Pi}}X\!\!+\!{\scriptstyle{\Pi}}Y}{\cos(\phi_s)\cos(\phi_f)}&=\cos(\lambda_s)\cos(\lambda_f)+\sin(\lambda_s)\sin(\lambda_f)=\cos(\Delta\lambda);\\
\Delta\widehat{\sigma}&=\arccos\Big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y+{\scriptstyle{\Pi}}Z\Big)
=\arccos\Big({\scriptstyle{\Pi}}Z+\big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y\big)\Big),\\
&=\arccos\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\Big).\end{align}\,\!

There is also a logarithmical form:

Read more about this topic:  Central Angle

Famous quotes containing the word distance:

    Her personality had an architectonic quality; I think of her when I see some of the great London railway termini, especially St. Pancras, with its soot and turrets, and she overshadowed her own daughters, whom she did not understand—my mother, who liked things to be nice; my dotty aunt. But my mother had not the strength to put even some physical distance between them, let alone keep the old monster at emotional arm’s length.
    Angela Carter (1940–1992)