Cellulosic Ethanol - Environmental Effects: Corn-based Vs. Grass-based

Environmental Effects: Corn-based Vs. Grass-based

See also: Environmental and social impacts of ethanol fuel in the U.S., Indirect land use change impacts of biofuels, and Low-carbon fuel standard
Summary of Searchinger et al.
comparison of corn ethanol and gasoline GHG emissions
with and without land use change
(Grams of CO2released per megajoule of energy in fuel)
Fuel type
(U.S.)
Carbon
intensity
Reduction
GHG
Carbon
intensity
+ ILUC
Reduction
GHG
Gasoline
92
-
92
-
Corn ethanol
74
-20%
177
+93%
Cellulosic ethanol
28
-70%
138
+50%

In 2008, there was only a small amount of switchgrass dedicated for ethanol production. In order for it to be grown on a large-scale production it must compete with existing uses of agricultural land, mainly for the production of crop commodities. Of the United States' 2.26 billion acres (9.1 million km2) of unsubmerged land, 33% are forestland, 26% pastureland and grassland, and 20% crop land. A study done by the U.S. Departments of Energy and Agriculture in 2005 determined whether there were enough available land resources to sustain production of over 1 billion dry tons of biomass annually to replace 30% or more of the nation’s current use of liquid transportation fuels. The study found that there could be 1.3 billion dry tons of biomass available for ethanol use, by making little changes in agricultural and forestry practices and meeting the demands for forestry products, food, and fiber. A recent study done by the University of Tennessee reported that as many as 100 million acres (400,000 km2, or 154,000 sq mi) of cropland and pasture will need to be allocated to switchgrass production in order to offset petroleum use by 25 percent.

Currently, corn is easier and less expensive to process into ethanol in comparison to cellulosic ethanol. The Department of Energy estimates that it costs about $2.20 per gallon to produce cellulosic ethanol, which is twice as much as ethanol from corn. Enzymes that destroy plant cell wall tissue cost 30 to 50 cents per gallon of ethanol compared to 3 cents per gallon for corn. The Department of Energy hopes to reduce production cost to $1.07 per gallon by 2012 to be effective. However, cellulosic biomass is cheaper to produce than corn, because it requires fewer inputs, such as energy, fertilizer, herbicide, and is accompanied by less soil erosion and improved soil fertility. Additionally, nonfermentable and unconverted solids left after making ethanol can be burned to provide the fuel needed to operate the conversion plant and produce electricity. Energy used to run corn-based ethanol plants is derived from coal and natural gas. The Institute for Local Self-Reliance estimates the cost of cellulosic ethanol from the first generation of commercial plants will be in the $1.90–$2.25 per gallon range, excluding incentives. This compares to the current cost of $1.20–$1.50 per gallon for ethanol from corn and the current retail price of over $4.00 per gallon for regular gasoline (which is subsidized and taxed).

One of the major reasons for increasing the use of biofuels is to reduce greenhouse gas emissions. In comparison to gasoline, ethanol burns cleaner, thus putting less carbon dioxide and overall pollution in the air. Additionally, only low levels of smog are produced from combustion. According to the U.S. Department of Energy, ethanol from cellulose reduces green house gas emission by 86 percent, when compared to gasoline and in comparison to corn-based ethanol which decreases emissions by 52 percent. Carbon dioxide gas emissions are shown to be 85% lower than those from gasoline. Cellulosic ethanol contributes little to the greenhouse effect and has a five times better net energy balance than corn-based ethanol. When used as a fuel, cellulosic ethanol releases less sulfur, carbon monoxide, particulates, and greenhouse gases. Cellulosic ethanol should earn producers carbon reduction credits, higher than those given to producers who grow corn for ethanol, which is about 3 to 20 cents per gallon.

It takes 0.76 J of energy from fossil fuels to produce 1 J worth of ethanol from corn. This total includes the use of fossil fuels used for fertilizer, tractor fuel, ethanol plant operation, etc. Research has shown that fossil fuel can produce over five times the volume of ethanol from prairie grasses, according to Terry Riley, President of Policy at the Theodore Roosevelt Conservation Partnership. The United States Department of Energy concludes that corn-based ethanol provides 26 percent more energy than it requires for production, while cellulosic ethanol provides 80 percent more energy. Cellulosic ethanol yields 80 percent more energy than is required to grow and convert it. The process of turning corn into ethanol requires about 1700 times (by volume) as much water as ethanol produced. Additionally, it leaves 12 times its volume in waste. Grain ethanol uses only the edible portion of the plant. Expansion of corn acres for the production of ethanol poses threats to biodiversity. Corn lacks a large root system, which allows extreme soil erosion to take place. This has a direct effect on soil particles, along with excess fertilizers and other chemicals, washing into local waterways, damaging water quality and harming aquatic life. Planting riparian areas can serve as a buffer to waterways, and decrease runoff.

U.S. Environmental Protection Agency
Draft life cycle GHG emissions reduction results
for different time horizon and discount rate approaches
(includes indirect land use change effects)
Fuel Pathway 100 years +
2% discount
rate
30 years +
0% discount
rate
Corn ethanol (natural gas dry mill)(1)
-16%
+5%
Corn ethanol (Best case NG DM)(2)
-39%
-18%
Corn ethanol (coal dry mill)
+13%
+34%
Corn ethanol (biomass dry mill)
-39%
-18%
Corn ethanol (biomass dry mill with
combined heat and power)
-47%
-26%
Brazilian sugarcane ethanol
-44%
-26%
Cellulosic ethanol from switchgrass
-128%
-124%
Cellulosic ethanol from corn stover
-115%
-116%

Cellulose is not used for food and can be grown in all parts of the world. The entire plant can be used when producing cellulosic ethanol. Switchgrass yields twice as much ethanol per acre than corn. Therefore, less land is needed for production and thus less habitat fragmentation. Biomass materials require fewer inputs, such as fertilizer, herbicides, and other chemicals that can pose risks to wildlife. Their extensive roots improve soil quality, reduce erosion, and increase nutrient capture. Herbaceous energy crops reduce soil erosion by greater than 90%, when compared to conventional commodity crop production. This can translate into improved water quality for rural communities. Additionally, herbaceous energy crops add organic material to depleted soils and can increase soil carbon, which can have a direct effect on climate change, as soil carbon can absorb carbon dioxide in the air. As compared to commodity crop production, biomass reduces surface runoff and nitrogen transport. Switchgrass provides an environment for diverse wildlife habitation, mainly insects and ground birds. Conservation Reserve Program (CRP) land is composed of perennial grasses, which are used for cellulosic ethanol, and may be available for use.

For years American farmers have practiced row cropping, with crops such as sorghum and corn. Because of this, much is known about the effect of these practices on wildlife. The most significant effect of increased corn ethanol would be the additional land that would have to be converted to agricultural use and the increased erosion and fertilizer use that goes along with agricultural production. Increasing our ethanol production through the use of corn could produce negative effects on wildlife, the magnitude of which will depend on the scale of production and whether the land used for this increased production was formerly idle, in a natural state, or planted with other row crops. Another consideration is whether to plant a switchgrass monoculture or use a variety of grasses and other vegetation. While a mixture of vegetation types likely would provide better wildlife habitat, the technology has not yet developed to allow the processing of a mixture of different grass species or vegetation types into bioethanol. Of course, cellulosic ethanol production is still in its infancy, and the possibility of using diverse vegetation stands instead of monocultures deserves further exploration as research continues.

A study by Nobel Prize winner Paul Crutzen found ethanol produced from corn had a "net climate warming" effect when compared to oil when the full life cycle assessment properly considers the nitrous oxide (N20) emissions that occur during corn ethanol production. Crutzen found that crops with less nitrogen demand, such as grasses and woody coppice species, have more favourable climate impacts.

Read more about this topic:  Cellulosic Ethanol