Celestial Mechanics - Perturbation Theory

Perturbation Theory

Perturbation theory comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly. (It is closely related to methods used in numerical analysis, which are ancient.) The earliest use of perturbation theory was to deal with the otherwise unsolveable mathematical problems of celestial mechanics: Newton's solution for the orbit of the Moon, which moves noticeably differently from a simple Keplerian ellipse because of the competing gravitation of the Earth and the Sun.

Perturbation methods start with a simplified form of the original problem, which is carefully chosen to be exactly solvable. In celestial mechanics, this is usually a Keplerian ellipse, which is correct when there are only two gravitating bodies (say, the Earth and the Moon), or a circular orbit, which is only correct in special cases of two-body motion, but is often close enough for practical use. The solved, but simplified problem is then "perturbed" to make its starting conditions closer to the real problem, such as including the gravitational attraction of a third body (the Sun). The slight changes that result, which themselves may have been simplified yet again, are used as corrections. Because of simplifications introduced along every step of the way, the corrections are never perfect, but even one cycle of corrections often provides a remarkably better approximate solution to the real problem.

There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. The common difficulty with the method is that usually the corrections progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections. Newton is reported to have said, regarding the problem of the Moon's orbit "It causeth my head to ache."

This general procedure – starting with a simplified problem and gradually adding corrections that make the starting point of the corrected problem closer to the real situation – is a widely used mathematical tool in advanced sciences and engineering. It is the natural extension of the "guess, check, and fix" method used anciently with numbers.

Read more about this topic:  Celestial Mechanics

Famous quotes containing the word theory:

    If my theory of relativity is proven correct, Germany will claim me as a German and France will declare that I am a citizen of the world. Should my theory prove untrue, France will say that I am a German and Germany will declare that I am a Jew.
    Albert Einstein (1879–1955)