Cavity Magnetron - History

History

The first simple, two-pole magnetron was developed in 1920 by Albert Hull at General Electric's Research Laboratories (Schenectady, New York), as an outgrowth of his work on the magnetic control of vacuum tubes in an attempt to work around the patents held by Lee De Forest on electrostatic control.

Hull's magnetron was not originally intended to generate VHF (very-high-frequency) electromagnetic waves. However, in 1924, Czech physicist August Žáček (1886–1961) and German physicist Erich Habann (1892–1968) independently discovered that the magnetron could generate waves of 100 megahertz to 1 gigahertz. Žáček, a professor at Prague's Charles University, published first; however, he published in a journal with a small circulation and thus attracted little attention. Habann, a student at the University of Jena, investigated the magnetron for his doctoral dissertation of 1924. Throughout the 1920s, Hull and other researchers around the world worked to develop the magnetron. Most of these early magnetrons were glass vacuum tubes with multiple anodes. However, the two-pole magnetron, also known as a split-anode magnetron, had relatively low efficiency. The cavity version (properly referred to as a resonant-cavity magnetron) proved to be far more useful. An early multi-cavity version of the magnetron was reported by Bucharest University Professor Theodor V. Ionescu. and followed in 1937-1940 by a similar multi-cavity magnetron built by the British physicist, Sir John Turton Randall, FRSE together with a team of British coworkers for the British and American military radar installations in WWII.

While radar was being developed during World War II, there arose an urgent need for a high-power microwave generator that worked at shorter wavelengths (around 10 cm (3 GHz)) rather than the 150 cm (200 MHz) that was available from tube-based generators of the time. It was known that a multi-cavity resonant magnetron had been developed and patented in 1935 by Hans Hollmann in Berlin, and independently, in 1935, by physicist Theodor V. Ionescu in Romania. However, the German military considered the frequency drift of Hollman's device to be undesirable, and based their radar systems on the klystron instead. But klystrons could not at that time achieve the high power output that magnetrons eventually reached. This was one reason that German night fighter radars were not a match for their British counterparts.

In 1940, at the University of Birmingham in the United Kingdom, John Randall and Harry Boot produced a working prototype similar to Hollman's cavity magnetron, but added liquid cooling and a stronger cavity. Randall and Boot soon managed to increase its power output 100 fold. Instead of abandoning the magnetron due to its frequency instability, they sampled the output signal and synchronized their receiver to whatever frequency was actually being generated. In 1941, the problem of frequency instability was solved by coupling ("strapping") alternate cavities within the magnetron. (For an overview of early magnetron designs, including that of Boot and Randall, see )

Because France had just fallen to the Nazis and Britain had no money to develop the magnetron on a massive scale, Churchill agreed that Sir Henry Tizard should offer the magnetron to the Americans in exchange for their financial and industrial help (the Tizard Mission). An early 6 kW version, built in England by the General Electric Company Research Laboratories, Wembley, London (not to be confused with the similarly named American company General Electric), was given to the US government in September 1940. At the time the most powerful equivalent microwave producer available in the US (a klystron) had a power of only ten watts. The cavity magnetron was widely used during World War II in microwave radar equipment and is often credited with giving Allied radar a considerable performance advantage over German and Japanese radars, thus directly influencing the outcome of the war. It was later described by America as "the most valuable cargo ever brought to our shores".

The Bell Telephone Laboratories made a producible version from the magnetron delivered to America by the Tizard Mission, and before the end of 1940, the Radiation Laboratory had been set up on the campus of the Massachusetts Institute of Technology to develop various types of radar using the magnetron. By early 1941, portable centimetric airborne radars were being tested in American and British aircraft. In late 1941, the Telecommunications Research Establishment in Great Britain used the magnetron to develop a revolutionary airborne, ground-mapping radar codenamed H2S. The H2S radar was in part developed by Alan Blumlein and Bernard Lovell.

Centimetric radar, made possible by the cavity magnetron, allowed for the detection of much smaller objects and the use of much smaller antennas. The combination of small-cavity magnetrons, small antennas, and high resolution allowed small, high quality radars to be installed in aircraft. They could be used by maritime patrol aircraft to detect objects as small as a submarine periscope, which allowed aircraft to attack and destroy submerged submarines which had previously been undetectable from the air. Centimetric contour mapping radars like H2S improved the accuracy of Allied bombers used in the strategic bombing campaign. Centimetric gun-laying radars were likewise far more accurate than the older technology. They made the big-gunned Allied battleships more deadly and, along with the newly developed proximity fuze, made anti-aircraft guns much more dangerous to attacking aircraft. The two coupled together and used by anti-aircraft batteries, placed along the flight path of German V-1 flying bombs on their way to London, are credited with destroying many of the flying bombs before they reached their target.

Since then, many millions of cavity magnetrons have been manufactured; while some have been for radar the vast majority have been for microwave ovens. The use in radar itself has dwindled to some extent, as more accurate signals have generally been needed and developers have moved to klystron and traveling-wave tube systems for these needs.

Read more about this topic:  Cavity Magnetron

Famous quotes containing the word history:

    If man is reduced to being nothing but a character in history, he has no other choice but to subside into the sound and fury of a completely irrational history or to endow history with the form of human reason.
    Albert Camus (1913–1960)

    Literary works cannot be taken over like factories, or literary forms of expression like industrial methods. Realist writing, of which history offers many widely varying examples, is likewise conditioned by the question of how, when and for what class it is made use of.
    Bertolt Brecht (1898–1956)

    Philosophy of science without history of science is empty; history of science without philosophy of science is blind.
    Imre Lakatos (1922–1974)