Causal System

A causal system (also known as a physical or nonanticipative system) is a system where the output depends on past and current inputs but not future inputs i.e. the output only depends on the input for values of .

The idea that the output of a function at any time depends only on past and present values of input is defined by the property commonly referred to as causality. A system that has some dependence on input values from the future (in addition to possible dependence on past or current input values) is termed a non-causal or acausal system, and a system that depends solely on future input values is an anticausal system. Note that some authors have defined an anticausal system as one that depends solely on future and present input values or, more simply, as a system that does not depend on past input values.

Classically, nature or physical reality has been considered to be a causal system. Physics involving special relativity or general relativity require more careful definitions of causality, as described elaborately in causality (physics).

The causality of systems also plays an important role in digital signal processing, where filters are often constructed so that they are causal. For more information, see causal filter. For a causal system, the impulse response of the system must be 0 for all t<0. That is the sole necessary as well as sufficient condition for causality of a system, linear or non-linear.

Note that the systems may be discrete or continuous. Similar rules apply to both kind of systems.

Read more about Causal System:  Mathematical Definitions

Famous quotes containing the words causal and/or system:

    There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.
    Ralph Waldo Emerson (1803–1882)

    Authority is the spiritual dimension of power because it depends upon faith in a system of meaning that decrees the necessity of the hierarchical order and so provides for the unity of imperative control.
    Shoshana Zuboff (b. 1951)