In signal processing, a causal filter is a linear and time-invariant causal system. The word causal indicates that the filter output depends only on past and present inputs. A filter whose output also depends on future inputs is non-causal. A filter whose output depends only on future inputs is anti-causal. Systems (including filters) that are realizable (i.e. that operate in real time) must be causal because such systems cannot act on a future input. In effect that means the output sample that best represents the input at time comes out slightly later. A common design practice for digital filters is to create a realizable filter by shortening and/or time-shifting a non-causal impulse response. If shortening is necessary, it is often accomplished as the product of the impulse-response with a window function.
Read more about Causal Filter: Example, Characterization of Causal Filters in The Frequency Domain
Famous quotes containing the word causal:
“There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.”
—Ralph Waldo Emerson (18031882)