Cauchy's Integral Theorem - Proof

Proof

If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proved as a direct consequence of Green's theorem and the fact that the real and imaginary parts of must satisfy the Cauchy–Riemann equations in the region bounded by, and moreover in the open neighborhood U of this region. Cauchy provided this proof, but it was later proved by Goursat without requiring techniques from vector calculus, or the continuity of partial derivatives.

We can break the integrand, as well as the differential into their real and imaginary components:

In this case we have

By Green's theorem, we may then replace the integrals around the closed contour with an area integral throughout the domain that is enclosed by as follows:

However, being the real and imaginary parts of a function analytic in the domain, and must satisfy the Cauchy–Riemann equations there:

We therefore find that both integrands (and hence their integrals) are zero

This gives the desired result

Read more about this topic:  Cauchy's Integral Theorem

Famous quotes containing the word proof:

    If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a “Declaration &c.” which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.
    Thomas Jefferson (1743–1826)

    The chief contribution of Protestantism to human thought is its massive proof that God is a bore.
    —H.L. (Henry Lewis)

    If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nation’s greatest strength, will tell their own story to the world.
    Susan B. Anthony (1820–1906)