Cauchy's Integral Theorem - Proof

Proof

If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proved as a direct consequence of Green's theorem and the fact that the real and imaginary parts of must satisfy the Cauchy–Riemann equations in the region bounded by, and moreover in the open neighborhood U of this region. Cauchy provided this proof, but it was later proved by Goursat without requiring techniques from vector calculus, or the continuity of partial derivatives.

We can break the integrand, as well as the differential into their real and imaginary components:

In this case we have

By Green's theorem, we may then replace the integrals around the closed contour with an area integral throughout the domain that is enclosed by as follows:

However, being the real and imaginary parts of a function analytic in the domain, and must satisfy the Cauchy–Riemann equations there:

We therefore find that both integrands (and hence their integrals) are zero

This gives the desired result

Read more about this topic:  Cauchy's Integral Theorem

Famous quotes containing the word proof:

    Right and proof are two crutches for everything bent and crooked that limps along.
    Franz Grillparzer (1791–1872)

    The proof of a poet is that his country absorbs him as affectionately as he has absorbed it.
    Walt Whitman (1819–1892)

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)