Cauchy's Integral Theorem - Proof

Proof

If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proved as a direct consequence of Green's theorem and the fact that the real and imaginary parts of must satisfy the Cauchy–Riemann equations in the region bounded by, and moreover in the open neighborhood U of this region. Cauchy provided this proof, but it was later proved by Goursat without requiring techniques from vector calculus, or the continuity of partial derivatives.

We can break the integrand, as well as the differential into their real and imaginary components:

In this case we have

By Green's theorem, we may then replace the integrals around the closed contour with an area integral throughout the domain that is enclosed by as follows:

However, being the real and imaginary parts of a function analytic in the domain, and must satisfy the Cauchy–Riemann equations there:

We therefore find that both integrands (and hence their integrals) are zero

This gives the desired result

Read more about this topic:  Cauchy's Integral Theorem

Famous quotes containing the word proof:

    The moment a man begins to talk about technique that’s proof that he is fresh out of ideas.
    Raymond Chandler (1888–1959)

    If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nation’s greatest strength, will tell their own story to the world.
    Susan B. Anthony (1820–1906)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)