Cauchy's Integral Formula - Theorem

Theorem

Suppose U is an open subset of the complex plane C, f : UC is a holomorphic function and the closed disk D = { z : | zz0| ≤ r} is completely contained in U. Let be the circle forming the boundary of D. Then for every a in the interior of D:

where the contour integral is taken counter-clockwise.

The proof of this statement uses the Cauchy integral theorem and similarly only requires f to be complex differentiable. Since the reciprocal of the denominator of the integrand in Cauchy's integral formula can be expanded as a power series in the variable (az0), it follows that holomorphic functions are analytic. In particular f is actually infinitely differentiable, with

This formula is sometimes referred to as Cauchy's differentiation formula.

The circle γ can be replaced by any closed rectifiable curve in U which has winding number one about a. Moreover, as for the Cauchy integral theorem, it is sufficient to require that f be holomorphic in the open region enclosed by the path and continuous on its closure.

Read more about this topic:  Cauchy's Integral Formula

Famous quotes containing the word theorem:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)