Proof Sketch
By using the Cauchy integral theorem, one can show that the integral over C (or the closed rectifiable curve) is equal to the same integral taken over an arbitrarily small circle around a. Since f(z) is continuous, we can choose a circle small enough on which f(z) is arbitrarily close to f(a). On the other hand, the integral
over any circle C centered at a. This can be calculated directly via a parametrization (integration by substitution) where 0 ≤ t ≤ 2π and ε is the radius of the circle.
Letting ε → 0 gives the desired estimate
Read more about this topic: Cauchy's Integral Formula
Famous quotes containing the words proof and/or sketch:
“In the reproof of chance
Lies the true proof of men.”
—William Shakespeare (15641616)
“the vagabond began
To sketch a face that well might buy the soul of any man.
Then, as he placed another lock upon the shapely head,
With a fearful shriek, he leaped and fell across the
picturedead.”
—Hugh Antoine DArcy (18431925)