Consequences
The integral formula has broad applications. First, it implies that a function which is holomorphic in an open set is in fact infinitely differentiable there. Furthermore, it is an analytic function, meaning that it can be represented as a power series. The proof of this uses the dominated convergence theorem and the geometric series applied to
The formula is also used to prove the residue theorem, which is a result for meromorphic functions, and a related result, the argument principle. It is known from Morera's theorem that the uniform limit of holomorphic functions is holomorphic. This can also be deduced from Cauchy's integral formula: indeed the formula also holds in the limit and the integrand, and hence the integral, can be expanded as a power series. In addition the Cauchy formulas for the higher order derivatives show that all these derivatives also converge uniformly.
The analog of the Cauchy integral formula in real analysis is the Poisson integral formula for harmonic functions; many of the results for holomorphic functions carry over to this setting. No such results, however, are valid for more general classes of differentiable or real analytic functions. For instance, the existence of the first derivative of a real function need not imply the existence of higher order derivatives, nor in particular the analyticity of the function. Likewise, the uniform limit of a sequence of (real) differentiable functions may fail to be differentiable, or may be differentiable but with a derivative which is not the limit of the derivatives of the members of the sequence.
Read more about this topic: Cauchy's Integral Formula
Famous quotes containing the word consequences:
“We are still barely conscious of how harmful it is to treat children in a degrading manner. Treating them with respect and recognizing the consequences of their being humiliated are by no means intellectual matters; otherwise, their importance would long since have been generally recognized.”
—Alice Miller (20th century)
“There are more consequences to a shipwreck than the underwriters notice.”
—Henry David Thoreau (18171862)
“The horror of Gandhis murder lies not in the political motives behind it or in its consequences for Indian policy or for the future of non-violence; the horror lies simply in the fact that any man could look into the face of this extraordinary person and deliberately pull a trigger.”
—Mary McCarthy (19121989)