Many of the above concepts, especially equivalence of categories, adjoint functor pairs, and functor categories, can be situated into the context of higher-dimensional categories. Briefly, if we consider a morphism between two objects as a "process taking us from one object to another", then higher-dimensional categories allow us to profitably generalize this by considering "higher-dimensional processes".
For example, a (strict) 2-category is a category together with "morphisms between morphisms", i.e., processes which allow us to transform one morphism into another. We can then "compose" these "bimorphisms" both horizontally and vertically, and we require a 2-dimensional "exchange law" to hold, relating the two composition laws. In this context, the standard example is Cat, the 2-category of all (small) categories, and in this example, bimorphisms of morphisms are simply natural transformations of morphisms in the usual sense. Another basic example is to consider a 2-category with a single object; these are essentially monoidal categories. Bicategories are a weaker notion of 2-dimensional categories in which the composition of morphisms is not strictly associative, but only associative "up to" an isomorphism.
This process can be extended for all natural numbers n, and these are called n-categories. There is even a notion of ω-category corresponding to the ordinal number ω.
Higher-dimensional categories are part of the broader mathematical field of higher-dimensional algebra, a concept introduced by Ronald Brown. For a conversational introduction to these ideas, see John Baez, 'A Tale of n-categories' (1996).
Read more about this topic: Category Theory
Famous quotes containing the word categories:
“Kitsch ... is one of the major categories of the modern object. Knick-knacks, rustic odds-and-ends, souvenirs, lampshades, and African masks: the kitsch-object is collectively this whole plethora of trashy, sham or faked objects, this whole museum of junk which proliferates everywhere.... Kitsch is the equivalent to the cliché in discourse.”
—Jean Baudrillard (b. 1929)