Further Concepts and Results
The definitions of categories and functors provide only the very basics of categorical algebra; additional important topics are listed below. Although there are strong interrelations between all of these topics, the given order can be considered as a guideline for further reading.
- The functor category DC has as objects the functors from C to D and as morphisms the natural transformations of such functors. The Yoneda lemma is one of the most famous basic results of category theory; it describes representable functors in functor categories.
- Duality: Every statement, theorem, or definition in category theory has a dual which is essentially obtained by "reversing all the arrows". If one statement is true in a category C then its dual will be true in the dual category Cop. This duality, which is transparent at the level of category theory, is often obscured in applications and can lead to surprising relationships.
- Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction. Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be seen as a more abstract and powerful view on universal properties.
Read more about this topic: Category Theory
Famous quotes containing the words concepts and/or results:
“When you have broken the reality into concepts you never can reconstruct it in its wholeness.”
—William James (18421910)
“I have no doubt that it was a principle they fought for, as much as our ancestors, and not to avoid a three-penny tax on their tea; and the results of this battle will be as important and memorable to those whom it concerns as those of the battle of Bunker Hill, at least.”
—Henry David Thoreau (18171862)