Catalan's Constant - Quickly Converging Series

Quickly Converging Series

The following two formulas involve quickly converging series, and are thus appropriate for numerical computation:


\begin{align}
G & =
3 \sum_{n=0}^\infty \frac{1}{2^{4n}}
\left(
-\frac{1}{2(8n+2)^2}
+\frac{1}{2^2(8n+3)^2}
-\frac{1}{2^3(8n+5)^2}
+\frac{1}{2^3(8n+6)^2}
-\frac{1}{2^4(8n+7)^2}
+\frac{1}{2(8n+1)^2}
\right) \\
& {}\quad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}}
\left(
\frac{1}{2^4(8n+2)^2}
+\frac{1}{2^6(8n+3)^2}
-\frac{1}{2^9(8n+5)^2}
-\frac{1}{2^{10} (8n+6)^2}
-\frac{1}{2^{12} (8n+7)^2}
+\frac{1}{2^3(8n+1)^2}
\right)
\end{align}

and

The theoretical foundations for such series is given by Broadhurst (the first formula) and Ramanujan (the second formula). The algorithms for fast evaluation of the Catalan constant is constructed by E. Karatsuba.

Read more about this topic:  Catalan's Constant

Famous quotes containing the words quickly, converging and/or series:

    Names, once they are in common use, quickly become mere sounds, their etymology being buried, like so many of the earth’s marvels, beneath the dust of habit.
    Salman Rushdie (b. 1947)

    It might become a wheel spoked red and white
    In alternate stripes converging at a point
    Of flame on the line, with a second wheel below,
    Just rising, accompanying, arranged to cross,
    Through weltering illuminations, humps
    Of billows, downward, toward the drift-fire shore.
    Wallace Stevens (1879–1955)

    Life ... is not simply a series of exciting new ventures. The future is not always a whole new ball game. There tends to be unfinished business. One trails all sorts of things around with one, things that simply won’t be got rid of.
    Anita Brookner (b. 1928)