Catalan's Conjecture - History

History

The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where x and y were restricted to be 2 or 3.

In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a,b to give an effective upper bound for x,y,a,b. Langevin computed a value of exp exp exp exp 730 for the bound. This resolved Catalan's conjecture for all but a finite number of cases. However, the finite calculation required to complete the proof of the theorem was nonetheless too time-consuming to perform.

Catalan's conjecture was proved by Preda Mihăilescu in April 2002, so it is now sometimes called Mihăilescu's theorem. The proof was published in the Journal für die reine und angewandte Mathematik, 2004. It makes extensive use of the theory of cyclotomic fields and Galois modules. An exposition of the proof was given by Yuri Bilu in the Séminaire Bourbaki.

Read more about this topic:  Catalan's Conjecture

Famous quotes containing the word history:

    the future is simply nothing at all. Nothing has happened to the present by becoming past except that fresh slices of existence have been added to the total history of the world. The past is thus as real as the present.
    Charlie Dunbar Broad (1887–1971)

    What has history to do with me? Mine is the first and only world! I want to report how I find the world. What others have told me about the world is a very small and incidental part of my experience. I have to judge the world, to measure things.
    Ludwig Wittgenstein (1889–1951)

    To history therefore I must refer for answer, in which it would be an unhappy passage indeed, which should shew by what fatal indulgence of subordinate views and passions, a contest for an atom had defeated well founded prospects of giving liberty to half the globe.
    Thomas Jefferson (1743–1826)