Cartesian Coordinate System - Representing A Vector in The Standard Basis

Representing A Vector in The Standard Basis

A point in space in a Cartesian coordinate system may also be represented by a position vector, which can be thought of as an arrow pointing from the origin of the coordinate system to the point. If the coordinates represent spatial positions (displacements), it is common to represent the vector from the origin to the point of interest as . In two dimensions, the vector from the origin to the point with Cartesian coordinates (x, y) can be written as:

where, and are unit vectors in the direction of the x-axis and y-axis respectively, generally referred to as the standard basis (in some application areas these may also be referred to as versors). Similarly, in three dimensions, the vector from the origin to the point with Cartesian coordinates can be written as:

where is the unit vector in the direction of the z-axis.

There is no natural interpretation of multiplying vectors to obtain another vector that works in all dimensions, however there is a way to use complex numbers to provide such a multiplication. In a two dimensional cartesian plane, identify the point with coordinates (x, y) with the complex number z = x + iy. Here, i is the complex number whose square is the real number −1 and is identified with the point with coordinates (0,1), so it is not the unit vector in the direction of the x-axis (this confusion is just an unfortunate historical accident). Since the complex numbers can be multiplied giving another complex number, this identification provides a means to "multiply" vectors. In a three dimensional cartesian space a similar identification can be made with a subset of the quaternions.

Read more about this topic:  Cartesian Coordinate System

Famous quotes containing the words representing a, representing, standard and/or basis:

    He who has learned what is commonly considered the whole art of painting, that is, the art of representing any natural object faithfully, has as yet only learned the language by which his thoughts are to be expressed.
    John Ruskin (1819–1900)

    He who has learned what is commonly considered the whole art of painting, that is, the art of representing any natural object faithfully, has as yet only learned the language by which his thoughts are to be expressed.
    John Ruskin (1819–1900)

    Where shall we look for standard English but to the words of a standard man?
    Henry David Thoreau (1817–1862)

    Self-alienation is the source of all degradation as well as, on the contrary, the basis of all true elevation. The first step will be a look inward, an isolating contemplation of our self. Whoever remains standing here proceeds only halfway. The second step must be an active look outward, an autonomous, determined observation of the outer world.
    Novalis [Friedrich Von Hardenberg] (1772–1801)