Properties
A Cartan subalgebra of a finite dimensional semisimple Lie algebra over an algebraically closed field of characteristic 0 is abelian and also has the following property of its adjoint representation: the weight eigenspaces of restricted to diagonalize the representation, and the eigenspace of the zero weight vector is . (So, the centralizer of coincides with .) The non-zero weights are called the roots, and the corresponding eigenspaces are called root spaces, and are all 1-dimensional.
If is a linear Lie algebra (a Lie subalgebra of the Lie algebra of endomorphisms of a finite-dimensional vector space V) over an algebraically closed field, then any Cartan subalgebra of is the centralizer of a maximal toral Lie subalgebra of ; that is, a subalgebra consisting entirely of elements which are diagonalizable as endomorphisms of V which is maximal in the sense that it is not properly included in any other such subalgebra. If is semisimple and the field has characteristic zero, then a maximal toral subalgebra is self-normalizing, and so is equal to the associated Cartan subalgebra. If in addition is semisimple, then the adjoint representation presents as a linear Lie algebra, so that a subalgebra of is Cartan if and only if it is a maximal toral subalgebra. An advantage of this approach is that it is trivial to show the existence of such a subalgebra. In fact, if has only nilpotent elements, then it is nilpotent (Engel's theorem), but then its Killing form is identically zero, contradicting semisimplicity. Hence, must have a nonzero semisimple element.
Read more about this topic: Cartan Subalgebra
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (1632–1704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (1803–1882)